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Abstract
Deep neural networks can learn powerful and discriminative representations from a large number of labeled samples.

However, it is typically costly to collect and annotate large-scale datasets, which limits the applications of deep learning in

many real-world scenarios. Domain adaptation, as an option to compensate for the lack of labeled data, has attracted much

attention in the community of machine learning. Although a mass of methods for domain adaptation has been presented,

many of them simply focus on matching the distribution of the source and target feature representations, which may fail to

encode useful information about the target domain. In order to learn invariant and discriminative representations for both

domains, we propose a Cross-Domain Minimization with Deep Autoencoder method for unsupervised domain adaptation,

which simultaneously learns label prediction on the source domain and input reconstruction on the target domain using

shared feature representations aligned with correlation alignment in a unified framework. Furthermore, inspired by

adversarial training and cluster assumption, a task-specific class label discriminator is incorporated to confuse the predicted

target class labels with samples draw from categorical distribution, which can be regarded as entropy minimization

regularization. Extensive empirical results demonstrate the superiority of our approach over the state-of-the-art unsuper-

vised adaptation methods on both visual and non-visual cross-domain adaptation tasks.

Keywords Domain adaptation � Autoencoder � Adversarial training � Cluster assumption

1 Introduction

The development of deep neural networks has already

achieved significant success in many machine learning

tasks including object recognition [24, 31], semantic seg-

mentation [3, 37], object detection [19, 36], image style

transfer [17] and video advertising [62, 63]. However, one

major problem of deep neural networks is that although

they perform well on the testing data sampled from the

same distribution as the training data, they may find it

difficult to generalize to data sampled from different

distributions and make correct predictions. This phe-

nomenon is known as dataset bias or domain shift [23]: the

model trained on one large dataset cannot generalize well

to a novel dataset or task. In reality, labeled data may be

rare or costly to obtain in some cases, e.g., annotated

biomedical dataset in the area of medicine [28, 47].

Therefore, a straightforward but practical question is: Can

the knowledge from a different but related source domain

with plenty of labeled data be leveraged to help improve

the model performance of the target domain where scarce

labeled data exist? To address this issue, domain adapta-

tion (DA), which aims to mitigate the harmful effect of

domain shift with sufficient source domain data and limited

target domain data, has emerged as a new framework to

solve this problem and received great interest in the

machine learning community. In this work, we consider a

more extreme setting where the target domain is totally

unlabeled. In the literature, this setting is seen as unsu-

pervised domain adaptation [45], which can be regarded as

an extension of the semi-supervised learning [64] where
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labeled samples and unlabeled samples are drawn from the

same distribution.

To solve domain adaptation tasks, a series of approaches

have been put forward and can be roughly classified into

three categories: feature matching-based domain adapta-

tion [14], instance reweighting-based domain adaptation

[13] and parameter-based domain adaptation [27]. Among

them, feature matching-based approaches are the most

widely used domain adaptation approaches. The aim

behind these methods is to learn domain-invariant and

discriminative representations that can simultaneously

reduce domain difference and retain as much information

of the original domain as possible. Under the new feature

space, a classifier is then trained in a supervised manner via

labeled source domain data [57].

Recently, deep learning-based domain adaptation

methods have attracted much more attention to the highly

scalable and nonlinear mapping ability. Most of the exist-

ing methods consider convolutional neural networks (for

images) or Recurrent Neural Network (for natural language

or time series) as a feature extractor together with dis-

crepancy metric, such as maximum mean discrepancy

(MMD) [22], Kullback Leibler divergence (KL) [50] or

Hellinger Distance [4], as a regularization part of the joint

loss function [40] or an auxiliary domain discriminator [54]

to reduce the divergence between the distribution of source

and target features. However, these methods only focus on

reducing the distance between the source and target fea-

tures but do not make use of the target data effectively and

thus may fail to extract discriminative representations of

the target domain for the subsequent classification task.

As a typical and effective unsupervised learning algorithm,

autoencoder can extract discriminative representations by

copying its input to its output [34]. In order to address the

aforesaid limitation, several algorithms which are based on

autoencoder and feature discrepancy minimization to learn

invariant and discriminative feature representations have

been presented [7, 18, 29, 58, 65]. Despite achieving

appealing results, these methods still suffer from one limita-

tion. They only focus on transferring the source and target

domain samples into a new domain-invariant space mean-

while maintain as much of the remaining information of the

target domain as possible, followed by a traditional super-

vised learning algorithm applying on the transferred source

domain samples. That is to say, no target domain information

is considered during the label encoder training.

To address the aforementioned limitations in unsuper-

vised domain adaptation tasks, we introduce a Cross-Do-

main Minimization with Deep Autoencoder (CDMDA)

framework in this paper. An overall insight of our proposal is

shown in Fig. 1. In CDMDA, there are two encoding layers:

a feature encoding layer and a task-specific class label

encoding layer, and a decoding layer. More specifically, in

the feature encoding layer, CORrelation ALignment

(CORAL) [52] is incorporated to minimize distribution

discrepancy of the source and target features. In the label

encoding layer, we introduce a label discriminator to force

the distribution of predicted target labels to be indistin-

guishable from the categorical distribution following the

line of cluster assumption [11], i.e., decision boundaries of a

classifier should not cross high-density data regions. In the

decoding layer, target inputs are reconstructed via latent

feature representations, which encourages the feature

encoding layer to capture more information about the

structure of target data. See Fig. 2 for high level summary.

In summary, the main contributions of this paper are

described below.

1. We propose a new autoencoder-based unsupervised

domain adaptation algorithm CDMDA. Different from

most existing methods that only focus on minimizing

the distance of feature representations between two

different domains, we further incorporate a target

domain data reconstruction process based on the

CORrelation Alignment

   Cluster Assumption

Non-adapted Adapted

Fig. 1 Illustration of our proposal. In order to maximize the

classification accuracy of the unlabeled target domain, we minimize

the discrepancy between the source (blue) and target (red) domains

and maximize the distance between the classifier hyperplane and

target data points (color figure online)
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autoencoder to extract the structure of the target

domain for the subsequent classification task.

2. We are among the first to introduce a label discrim-

inator to the target label encoding layer to force the

distribution of predicted target labels to become

practically indistinguishable from the categorical dis-

tribution in the field of unsupervised domain adapta-

tion, which is deeply intertwined with the entropy

minimization algorithm [21].

The rest of the paper is organized as follows. In Sect. 2, we

review some most related work. In Sect. 3, some prelimi-

nary knowledge related to our method is introduced. In

Sect. 4, we present the CDMDA method from four training

phase and its learning algorithm. In Sect. 5, we report a

broad range of empirical results compared with other

competing methods and demonstrate the advantage of

incorporating the label discriminator empirically. Finally,

in Sect. 6 we draw conclusions and discuss the future work.

2 Related work

There has already been extensive prior work on transfer

learning [13, 14, 27, 32, 57, 59]. However, most of these

methods are designed for small datasets such as Office

dataset [49] and work on low dimensions surf features [5]

rather than high dimensions raw image pixels. With the

aforementioned limitations, these shallow methods are not

practical enough for real-world applications. Recent work

has paid more attention to deep learning-based methods

[7, 9, 15, 16, 18, 29, 39, 40, 46, 51, 53, 54, 58, 60, 65] due

to their empirical superiority on this problem and scala-

bility to large datasets.

In the case of unsupervised deep domain adaptation (the

focus of this paper), one major line of work follows parallel

CNN architectures such as Siamese Networks [8] whose

weights of corresponding layers are shared between source

domain and target domain, and then trains with a combi-

nation loss of a cross-entropy (applied to source domain)

and a discrepancy loss or an adversarial loss (applied to

source and target domains). One of the first such work is

deep domain confusion (DDC) [53] where a linear MMD

metric is applied to the last fully connected layer (before

the output layer) as an additional loss function. Long et al.

proposed deep adaptation network (DAN) [39], which

considers the sum of MMDs over several corresponding

layers and explores multiple kernels for adapting deep

representations. Apart from minimizing the discrepancy

loss, adversarial learning is another class of methods to

encourage domain confusion. Ganin et al. [15, 16]

Fig. 2 An overall architecture of the CDMDA model, where the

source domain feature encoder and label encoder share same weights

with target domain’s. There are three novelties compared to previous

methods: (1) we use CORAL as a regularizer to reduce the

distribution discrepancy between the source feature representations

zs and the target feature representations zt, (2) a label discriminator is

introduced to force the distribution of the label encoder output ŷt to be

indistinguishable from the categorical distribution ycat, and (3) we

reconstruct the target input via zt to capture the structure of the target

domain. See text for more information
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proposed domain adversarial neural networks (DANN)

which contain two classifiers: the first one is trained to

predict the task-specific class labels correctly, and the

second one is trained to predict the domain of the input.

The training strategy has the analogy of a minimax game:

the feature extractor tries to obtain domain-invariant fea-

tures to maximize the loss of the domain classifier, while

the domain classifier tries to discriminate which domain the

input is to minimize the loss of the domain classifier. The

minimax optimization becomes possible by integrating a

gradient reversal layer (GRL), which is left unchanged

during the forward propagation and reverses its gradient

during backpropagation. Similarly, Tzeng et al. [54] pro-

posed the adversarial discriminative domain adaptation

(ADDA), which considers inverted label GAN loss [20]

instead of GRL loss, to learn discriminative and domain-

invariant features.

Another line of work considers an autoencoder-based

architecture to better model both the label and the structure

of the data [7, 12, 18, 29, 58, 65]. These approaches are in

the same spirit as multitask learning [10] that the main task

can be beneficial from learning an auxiliary task.

Marginalized stacked denoising autoencoder (mSDA) [12]

is among the first to adopt the greedy layer-by-layer

training of stacked denoising autoencoder (SDAs) to learn

new representations for domain adaptation. Ghifary et al.

[18] proposed deep reconstruction classification networks

(DRCN) which combine standard convolutional neural

networks for source data prediction with deconvolutional

neural networks for target data reconstruction. Bousmalis

et al. [7] proposed domain separation networks (DSN)

which integrate data reconstruction and discrepancy mini-

mization together to simultaneously learn a private feature

space and a common feature space. Our work is in a similar

spirit to autoencoder-based methods but adopts the

CORAL to measure the similarity of the source and target

representations, which is different from the previous work

based on MMD or domain adversarial loss.

Cluster assumption is another critical component of our

work, which states that the decision boundary should not

cross high-density regions, but instead lie in low-density

regions [11]. This assumption is the key to semi-supervised

learning, leading to many successful learning algorithms

such as entropy regularization [21] and Pseudo-Label [35].

Recently, some unsupervised domain adaptation approa-

ches [9, 40, 46] have borrowed the idea from the cluster

assumption, which leverages entropy regularization as a

proxy. In this work, from another viewpoint of cluster

assumption, we consider incorporate a task-specific class

label discriminator to force the distribution of predicted

target labels to be indistinguishable from the categorical

distribution. Apparently, label confusion and entropy

minimization may seem to be two unrelated approaches for

domain adaptation. However, this is not the case, and

indeed, these two types of approaches are deeply inter-

twined. When the distribution of predicted target labels is

indistinguishable from the categorical distribution, the

entropy of the target domain reaches the minimum.

3 Preliminary knowledge

In this section, we will first review some most related pre-

liminary knowledge that is used in our proposed approach

and then briefly discuss the unsupervised domain adaptation

problem. A theoretical analysis of the expected target error

bound for domain adaptation will be introduced at last. Note

that all frequently used notations are listed in Table 1.

3.1 Autoencoder

An autoencoder is a neural network used to learn efficient

latent codings in an unsupervised manner [48]. Internally,

it has an encoder genc and a decoder gdec which are both

multilayer neural networks. Given an input x, the encoder

first maps it to latent feature codings z, and then the

decoder attempts to reconstruct its input from z. The pro-

cess of encoding and decoding of the basic autoencoder can

be summarized as:

z ¼ gencðx; hÞ ð1Þ

x̂ ¼ gdecðz; h0Þ ð2Þ

where genc and gdec are multilayer neural networks, h and h0

are corresponding parameters that can be optimized by

minimizing the following mean square reconstruction error:

min
h;h0

kx� x̂k2 ¼ min
h;h0

kx� gdec genc xð Þð Þk2 ð3Þ

Table 1 The notation and denotation

Notation Denotation

DS;DT The source and target domains

xs; xt Samples of the source and target domains

ys The label of the sample xs

ycat The sample drawn from a categorical distribution

ns; nt The batch size of the source and target domain samples

ZS;ZT The image features of the source and target domains

genc The feature encoding function

gdec The target reconstruction function

glab The label encoding function

gdis The discriminator function of the label regularization

phase

ggen The generator function of the label regularization phase

f The prediction logit output function
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Along the similar line, denoising autoencoder [56] recon-

structs original input data from partial corruption input to

make the representations more robust.

3.2 Correlation alignment

CORrelation ALignment (CORAL) is a relatively easy

unsupervised domain adaptation method that minimizes

domain shift by aligning the second-order statistics of

source and target distributions [52]. A linear transformation

A can be applied to the source feature space and use the

Frobenius norm as the matrix distance metric:

min
A

kCŜ � CTk2F ¼ min
A

kATCSA� CTk2F ð4Þ

whereCS andCT are the covariancematrices of the source and

target features and k � k2F denotes the matrix Frobenius norm.

The optimal transformation A� can be obtained as follows:

A� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CT þ aI
CS þ aI

r

ð5Þ

where aI is the regularization term which guarantees the full

rank of the covariance matrix, a is typically set to 1 as rec-

ommended in Sun et al. [52], and I is the identity matrix.

3.3 Definitions and problem statement

Definition 1 Domain. A domain D consists of two com-

ponents: a feature space X 2 Rd and a marginal distribu-

tion PðXÞ, i.e., D ¼ fX ;PðXÞg, where X 2 X .

Definition 2 Task. Given a specific domain D, a task T is

composed of a label space Y and an objective predictive

function f ð�Þ, i.e., T ¼ fY; f ðXÞg, where f(X) can be

interpreted as the conditional probability distribution

P(Y|X) from a probabilistic viewpoint.

Definition 3 Unsupervised domain adaptation. Given a

source domain DS and learning task T S with all samples

labeled, a target domain DT and learning task T T with all

samples unlabeled, unsupervised domain adaptation aims

to improve the performance of the target predictive func-

tion fTð�Þ in DT with the help of knowledge in DS and T S.

Typically, the distribution of the source domain DS is

different from the target domain DT but is related.

3.4 Theoretical analysis of the expected target
error bound

Theoretical studies have been developed for the bound of

the target domain generalization performance of a classifier

trained in the source domain. As analyzed in Ben-David

et al. [6], the bound of the expected target error can be

estimated as:

�tðhÞ� �sðhÞ þ
1

2
dLDLðXs;XtÞ þ C ð6Þ

h is the learned hypothesis which can be interpreted as the

predictor function. �tðhÞ and �sðhÞ are the prediction error of
the target domain and source domain, respectively. dLDL
denotes the L-divergence between the source and target

domains,which can beminimized by reducing the distribution

discrepancy. C ¼ arg minh02L �sðh0Þ þ �tðh0Þ is the general-

ization error of the ideal joint hypothesis h0, which can be

disregarded because it is considered to be negligibly small

[39]. Therefore, a practical domain adaptation algorithm

should simultaneouslyminimize the first two right-hand terms

of Eq. (6), i.e., �sðhÞ and 1
2
dLDLðXs;XtÞ. We will show how our

model jointly minimizes these two terms as follows.

4 Methodology

4.1 Main idea

To address the unsupervised domain adaptation scenario

where there is no label information about the target domain

data, we propose CDMDA which jointly learns a feature

extractor and a label predictor through four training phases.

The architecture of CDMDA is illustrated in Fig. 2, which

consists of a feature encoder, a label encoder, a target

decoder and a label discriminator. More specifically, let

genc denote the feature encoder that maps input x to feature

representations z which should be aligned between

domains, glab denote the label encoder that maps z to task-

specific predictions ŷ, gdec denote the target decoder that

takes z as input to reconstruct the origin input x̂ of the

target domain, and gdis denote the label discriminator that

discriminates whether its input is the task-specific predic-

tions ŷ or sampled from a categorical distribution. Note that

all four components are deep neural networks and can be

optimized through backpropagation with stochastic gradi-

ent descent (SGD) in a uniform framework.

4.2 Connections to existing work

Compared with the previous work [7, 18, 65], which are

also based on autoencoders to learn a common subspace

via capturing representations shared by both domains, a

major difference between ours and previous works is that,

inspired by Adversarial Autoencoders [42], we incorporate

a task-specific class label discriminator to regularize the

process of the target label prediction, which can be regar-

ded as minimizing the target domain entropy and pushing

the decision boundaries of classifier away from data-dense

regions [11, 21]. In the rest of this section, we will describe

CDMDA from four training phases together with their
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corresponding loss functions and give the learning algo-

rithm in detail.

4.3 Model learning

4.3.1 Feature divergence regularization phase

One of the key points of CDMDA as well as many other DA

methods is to learn a shared feature space that the source

features are aligned with the target features. Unlike many

existing methods that incorporate maximum mean discrep-

ancy (MMD) [22] as the feature divergence regularizer, we

employ correlation alignment to calculate the distance of the

second-order statistical information between feature repre-

sentations zs and zt of two domains. Since we adopt deep

neural networks instead of linear transformation A to get

feature space, we can rewrite Eq. (4) and minimize the fol-

lowing Lcoral term, which is similar to [51]:

Lcoral ¼
1

4d2
kCS � CTk2F ð7Þ

CS ¼
1

ns � 1
Z>
S ZS �

1

ns
1>ZS
� �>

1>ZS
� �

� �

ð8Þ

CT ¼ 1

nt � 1
Z>
T ZT � 1

nt
1>ZT
� �>

1>ZT
� �

� �

ð9Þ

where 1 is a column vector with all elements equal to 1, d is

the dimension of the feature representations, k � k2F denotes

the squared matrix Frobenius norm, and ZS ¼ ½zs1; . . .; zsns �
and ZT ¼ ½zt1; . . .; ztnt � denote batches of the feature repre-

sentations from the last layer of feature encoder. CS and CT

are the second-order statistics of the source and target

feature distributions.

According to chain rule and incorporating Eqs. (8) and

(9) into Eq. (7), the gradient of Eq. (7) w.r.t. its input can

be derived as follows:

oLcoral

oZS
¼ oLcoral

oCS

oCS

oZS
¼ 1

d2ðns � 1Þ ZS �
1

ns
1ð1TZSÞ

� �

ðCS � CTÞ

ð10Þ
oLcoral

oZT
¼ oLcoral

oCT

oCT

oZT
¼ � 1

d2ðnt � 1Þ ZT � 1

nt
1ð1TZTÞ

� �

ðCS � CTÞ

ð11Þ

4.3.2 Supervised learning phase

In this phase, we build a classifier f ðxÞ ¼ ðgenc � glabÞðxÞ
via minimizing the following cross-entropy on the labeled

source domain, where genc is a series of deep neural net-

works that extracts features from original inputs and glab is

a fully connected layer that maps features to the task-

specific class labels in our work:

Lclass ¼ � 1

ns

X

ns

i¼1

X

c

k¼1

1fysi ¼ kg log fkðxsi Þ ð12Þ

where c is the number of classes, fkðxsi Þ denotes the prob-

ability of ith source sample belonging to kth class. 1fysi ¼
kg equals to 1 when the ith source sample belongs to the

kth class and otherwise 0.

4.3.3 Reconstruction learning phase

In this phase, we simultaneously learn the feature encoder

genc and decoder gdec by minimizing reconstruction error of

the target domain, which can be regarded as learning dis-

criminative feature representations that approximate the

structure of the target data. We use the following mean

square loss to measure the reconstruction error:

Lrecon ¼
1

2nt

X

nt

i¼1

kxti � x̂tik
2 ¼ 1

2nt

X

nt

i¼1

kxti � gdec genc xti
� �� �

k2

ð13Þ

where x̂t is the reconstruction of the xt.

4.3.4 Label regularization phase

As we have mentioned in Sect. 2, cluster assumption is a

critical component of our model. Since there is no label

information of the target domain, a label discriminator is

incorporated to regularize the target label encoder, which is

inspired by the Adversarial Autoencoders [42]. In this

phase, the classifier f(x) and label discriminator gdis work in

a way that mimics the generative adversarial networks [20],

where the label discriminator tries to tell apart true samples

(draw from a categorical distribution) and fake samples

(output of the label encoder), while the classifier tries to

confuse it. Similar to the GANs, we can define the dis-

criminator loss and generator loss as follows:

Ldis ¼ � 1

nt

X

nt

i¼1

log gdis ycati

� �

þ log 1� gdis f ðxtiÞ
� �� �� �

ð14Þ

Lgen ¼ � 1

nt

X

nt

i¼1

log gdis f xti
� �� �

ð15Þ

ycat �CatðyÞ denotes samples that are drawn from the

categorical distribution, which can be viewed as a ‘‘1-of-

K’’ vector (a vector with one element containing a 1 and all

other elements containing a 0).

4.3.5 Learning algorithm

Since weights of the feature encoder and label encoder are

shared between the source and target domains, we can
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combine Eqs. (7), (12), (13) and (15) into one joint loss

function and minimize it through SGD at one time:

Ljoint ¼ Lclass þ k1Lcoral þ k2Lrecon þ k3Lgen ð16Þ

where k1, k2 and k3 are three trade-off parameters used to

balance the contributions of the four terms to the joint

objective function. Note that our proposed CDMDAmethod

well agreeswith the theory of domain adaptation provided by

Ben-David et al. [6]. The minimization of Lclass and Lcoral is

related to the first two terms of Eq. (6), respectively. The

detailed learning algorithm of the CDMDA is summarized in

Algorithm 1, and the stopping criterion is determined by

monitoring the accuracy of the validation set.

4.4 Relation to LDL-divergence

As we have mentioned in Sect. 3.4, a practical domain

adaptation algorithm should minimize both the source

domain prediction error and the LDL-discrepancy distance

between two distributions S and T . In this section, we give

a brief analysis of our method regarding LDL-divergence
[6]. Given a hypothesis h 2 L, dLDLðS; T Þ can be bounded

by the empirical estimate

dLDLðS; T Þ ¼ 2 sup
g2L

Pr½gðXSÞ ¼ 1� � Pr½gðXTÞ ¼ 1�j j

� d̂LDLðS; T Þ þ C1

� 2 1� inf
g2L

1

ns

X

ns

i¼1

L gðgencðxsi ÞÞ ¼ 1
� �

" 

þ 1

nt

X

nt

i¼1

L gðgencðxtiÞÞ ¼ �1
� �

#!

þ C1

¼ 2 1� inf
g2L

errðgÞ
� �

þ C1

ð17Þ

dLDLðS; T Þ shows that the empirical L-divergence between
two samples from distribution S and T converges uni-

formly to the true L-divergence for hypothesis classes L of

finite VC dimension. g 2 L is a classifier which achieves

minimum error on the binary classification problem of

distinguishing between features extracted from the source

domain and the target domain. L½�� is the linear loss

function of the Parzen window classifier where L½g ¼ 1� ¼
�1 and L½g ¼ � 1� ¼ 1. C1 is a constant related to the

complexity of hypothesis space. The optimal domain dis-

criminator g gives the upper bound for dLDLðS; T Þ. By
iteratively decreasing the feature discrepancy between the

source and target domains with the feature regularization

phase, the classification error of g would be maximized so

that dLDLðS; T Þ would be reduced.

5 Experiments

In this section, we evaluate the performance of CDMDA by

comparing with several state-of-the-art unsupervised

domain adaptation methods related to ours on four very

different visual digits datasets: MNIST [33], USPS [26],

SVHN [44] and SYN DIGITS dataset [15], which consist

of 10 common classes of digits. Example images can be

seen in Fig. 3. For non-visual domain adaptation, we

evaluate on multilingual text categorization dataset [2, 55].

5.1 Baselines

The following baselines are evaluated in the experiments of

this section. The source only model is trained without any

target domain data. The target only model is trained with

sufficient labeled target domain data in a supervised

Algorithm 1: Learning Algorithm of the CDMDA Method
Input : labeled source domain Ds = (Xs,Ys), unlabeled target domain Dt = (Xt),

trade-off parameters λ1, λ2, λ3, learning rate η
1 Initialize parameters of the feature encoder, the target decoder, the label encoder

and the label discriminator;
2 while not stop do
3 Sample a batch of source domain data with size ns and a batch of target domain

data with size nt;
4 Do a forward pass according to Eq. 16 to calculate the joint loss;
5 Do a backward pass to calculate the gradient of Eq. 16 and update the

parameters of the feature encoder, the target decoder, the label encoder and the
label discriminator;

6 Do a forward pass according to Eq. 14 to calculate the discriminator loss;
7 Do a backward pass to calculate the gradient of Eq. 14 and update the

parameters of the label discriminator
8 end

Output: optimal parameters of the feature encoder, the target decoder, the label
encoder and the label discriminator
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manner, which can be regarded as an upper bound of all

domain adaptation methods. In addition, we further con-

sider some recently proposed unsupervised domain adap-

tation methods related to ours as a comparison:

• ADDA The adversarial discriminative domain adapta-

tion [54] combines discriminative modeling, untied

weight sharing, and a GAN loss to adversarially learn

an indistinguishable feature space.

• DANN The domain adversarial neural networks [15, 16]

employ the gradient reversal layer to learn discrimina-

tive and invariant domain features with adversarial

training process.

• DRCN The Deep Reconstruction Classification Net-

work [18] which jointly learns a shared encoding

representation for supervised classification and unsu-

pervised reconstruction.

• Deep CORAL The Deep CORAL [51] extends

CORAL to learn a nonlinear transformation that aligns

correlations of layer activations in deep neural

networks.

5.2 Implement details

For the visual digits domain adaptation experiments, we

employ two convolutional layers with 64 and 128 filters

following two fully connected layers with 1024 and 128

units as the feature encoder. For the target decoder, two

transposed convolutional (deconvolution) [61] layers are

used to upsample and reconstruct the original input image.

For the label discriminator, there are three fully connected

layers with 100, 100 and 1 units. All layers are followed by

a ReLU [43] activation function apart from output layers.

The details can be seen in Fig. 4. For non-visual domain

adaptation experiments, we employ multilayer perceptron

(MLP) with two hidden layers (512 and 128 units) as the

encoder and its symmetrical architecture as the decoder.

Other parts of the model are the same as the previous one.

In all experiments, we adopt the ADAM optimization

algorithm [30] with a learning rate of 10�4 and conduct

mini-batch training with batch size 256 (128 labeled source

samples and 128 unlabeled target samples) to train the

model. For each task, we conduct hyper-parameters tuning

by randomly choosing 1000 labeled target samples from

test set as a validation set. Specifically, we restrict the

hyper-parameters search for each task to k1 ¼ ½0; 5�, k2 ¼
½0; 5� and k3 ¼ ½0; 2�.

We implement our framework with TensorFlow [1]. To

speed up the networks training process, all experiments are

carried on one NVIDIA Tesla P4 GPU with 8GB on-board

memory. The code has been released online.1

5.3 Results

We show the main results of all experiments in Tables 2

and 3. As can be seen, in most cases, when training with

labeled source samples together with unlabeled target

samples, unsupervised domain adaptation methods perform

better than source only model. Specifically, our proposed

method outperforms all competing methods on average in

both visual and non-visual domain adaptation tasks.

5.3.1 USPS $ MNIST

We first evaluate the adaptation scenario between the

handwritten digits dataset MNIST and USPS. To fairly

compare with previous works, we follow the protocol

proposed by Long et al. [38], which samples 1800 images

from the USPS dataset and 2000 images from the MNIST

dataset as the source or target domain. From the target

testing dataset, we randomly choose 1000 labeled samples

as a validation split to tune the hyper-parameters k1, k2, k3
and monitor the stopping criterion.

Since both MNIST and USPS are handwritten digits, the

domain discrepancy is not as large as other scenarios. As

can be seen from the first two columns of Table 2, the

source only model achieves a relatively high accuracy

when testing in the target domain. However, with DA, our

method can further gain considerable performance

improvement and outperform the competing methods by

about 8%.

5.3.2 SVHN $ MNIST

In this scenario, we increase the gap between the distri-

butions of two domains. The SVHN dataset is a real-world

Fig. 3 Examples of the four

visual datasets used in our

experiments. From left to right:

MNIST, USPS, SVHN and

SYN DIGITS

1 https://github.com/BoyuanJiang/CDMDA.
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dataset that is obtained from house number in Google

Street View images. It contains significant variations, e.g.,

in scale, background, color, rotation, shape and some

images contain more than one digit, while the images in

MNIST are grayscale and most images contain a centered

digit but variations in thickness (see Fig. 3 for detail).

Therefore, this is a rather difficult domain adaptation sce-

nario compared with the previous scenario. As above, we

use 1000 target samples for validation.

From the third column of Table 2, it can be seen that, for

the SVHN ! MNIST scenario, the source only model

achieves 66.2% accuracy on the target domain for the large

discrepancy between domains. With DA, our proposed

method can achieve 96.9% accuracy, which covers almost

90% of the gap between model trained on source samples

only and model trained on the sufficient target samples

with known target labels. On the contrary, the ADDA,

DANN and DRCN methods result in a slight accuracy

drop, which also indicates the task is more difficult than the

case of USPS$MNIST. To verify the effectiveness of our

model, we utilize t-SNE [41] to visualize the source and the

target features from the last layer of the feature encoder in

Fig. 1. In the left part of the figure, though the source

domain representations (blue) are discriminative and well

clustered, the target representations (red) are separated and

not aligned with the source representations well. However,

in right part of the figure, both the source and the target

representations are well clustered and aligned with each

other, which makes the classifier trained on the source

domain generalizable to the target domain.

The inverse direction MNIST ! SVHN gives a failure

example for our approach (approximately 35% target

accuracy and source only model is 30%). To our best

knowledge, there is no unsupervised DA method so far

which can cover the large discrepancy from MNIST to

SVHN and achieve satisfactory target accuracy.

5.3.3 SYN DIGITS ! SVHN

In this experiment, we aim to address a practical domain

adaptation scenario from synthetic images to real-world

images, which is of great interest for research in computer

vision. Generally, generating labeled synthetic data

requires less effort than obtaining a large number of labeled
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real-world images. The SYN DIGITS dataset [15] contains

about 500,000 images from Windows fonts by varying the

text, positioning, orientation, background, stroke colors,

and the amount of blur. Similar as above, we also randomly

sample 1000 target domain images for validation.

In this scenario, ADDA achieves the highest accuracy

91.2% of all methods. Our result 89.5% is close to the

highest one and gains considerable improvement (8%)

compared to source only model.

5.3.4 Text categorization

To evaluate the performance of our model on the non-

visual domain adaptation task, we apply our model to the

Multilingual Reuters Collection dataset [2, 55]. This data-

set, which is collected by sampling from the Reuters RCV1

and RCV2 collections, contains feature characteristics of

111,740 documents originally written in five different

languages and their translations (i.e., English, French,

German, Italian and Spanish), over a common set of six

categories (i.e., C15, CCAT, E21, ECAT, GCAT and

M11). Documents belonging to more than one of the 6

categories are assigned the label of their smallest category.

Therefore, there are 12–30K documents per language and

11–34K documents per category. All documents are rep-

resented as a bag of words, and then 11,547 dimensions of

TF-IDF features are extracted.

Similar to [25], we also select {English, French, German

or Italian} as the source domain and select Spanish as the

target domain. In each experiment, we randomly select

10,000 labeled samples from the source domain and 10,000

unlabeled samples from the target domain. Similar as above,

1000 target samples are selected for validation. In order to

learn the model efficiently, we first perform principal com-

ponents analysis (PCA) for dimension reduction and the

dimensions after PCA are 1000 (approximately 60% energy

is preserved). Table 3 shows that our model can significantly

improve classification accuracy compared with source only

model and other competing methods on three out of four

tasks. However, it is worth noticing that all methods fail on

the English ! Spanish scenario. The reason we believe is

that the domain discrepancy between these two domains is

more significant than the other three scenarios.

5.4 Ablation study

In this subsection, we evaluate the effectiveness of four

phases in our framework. Due to the space limitation, we

only conduct the experiments on the SVHN ! MNIST

scenario. Results are shown in Table 4 and Fig. 5. In all

experiments, supervised learning (SL) phase is selected,

while other three phases (i.e., feature regularization (FR),

reconstruction target (RT) and label regularization (LR)) are

varied in each experiment. Therefore, there are eight dif-

ferent combinations altogether, as can be seen from Table 4.

Index 1means themodel is trainedwithout any target domain

information, and Index 8 means all four phases of our

framework are included when training. With all four phases

together, the highest target accuracy can be achieved.

In Fig. 5, we make a comparison between model

behavior with the label regularization phase and without

that on four digits adaptation scenarios. It is obvious that

with LR (the blue line), the validation error on the target

domain declines faster than without LR (the green line).

Table 2 Recognition accuracies of visual domain adaptation experiments on cross-domain digits datasets

Method MNIST ! USPS USPS ! MNIST SVHN ! MNIST SYN ! SVHN Mean

SOURCE ONLY 83.0 73.7 66.2 83.5 76.6

ADDA 89.4 90.1 76.0 91.2 86.7

DANN 88.7 76.8 73.9 90.5 82.5

DRCN 91.8 73.7 82.0 84.2 82.9

DEEP CORAL 93.9 93.4 91.8 85.1 91.1

CDMDA (ours) 96.2 96.0 96.9 89.5 94.7

TRAIN ON TARGET 98.6 99.2 99.2 92.9 97.5

Bold values indicate the best result for each domain split

Table 3 Recognition accuracies

of non-visual domain adaptation

experiments on the Text dataset

with Spanish as the target

domain

Source articles SOURCE ONLY TRAIN ON TARGET DANN DEEP CORAL CDMDA (ours)

English 44.1 95.7 43.6 35.8 46.7

French 61.9 63.9 66.2 73.8

German 60.6 62.3 63.5 74.8

Italian 64.3 65.7 68.3 73.4

Mean 57.8 95.7 58.9 58.5 67.2

Bold values indicate the best result for each domain split
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5.5 Entropy minimization versus label
regularization

As we have mentioned in Sect. 4, a critical component to

our paper is cluster assumption. We achieve this by label

regularization, which confuses the distribution of predicted

target labels with the categorical distribution via the

adversarial training process. Since our aim is entropy

minimization, one may ask whether directly minimizing

the entropy of the target domain works. In this subsection,

we empirically compare these two ways. From Fig. 6, it

can be seen that both minimizing entropy directly and label

regularization via adversarial training can minimize the

entropy and improve the target validation accuracy

Table 4 Ablation study of four training phases of CDMDA on the SVHN!MNIST task

Index Supervised learning Feature regularization Reconstruction target Label regularization Accuracy

1
p

o o o 66.2

2
p

o o
p

67.6

3
p

o
p

o 72.1

4
p

o
p p

73.0

5
p p

o o 86.7

6
p p

o
p

94.9

7
p p p

o 85.0

8
p p p p

96.9

p
denotes this phase is considered in the experiment, and o denotes this phase is not considered

(a) (b)

(c) (d)

Fig. 5 Ablation study: with and without the label regularization (LR)

phase on four digital domain adaptation scenarios. Each experiment

adopts the same settings and iteration steps apart from with or without

label regularization phase. a SVHN ! MNIST. b USPS ! MNIST.

c MNIST ! USPS. d SYN ! SVHN
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compared with no entropy optimization method, which also

demonstrates the effectiveness of cluster assumption. Also,

when comparing the two entropy optimization methods,

label regularization via adversarial training provides a

lower entropy and a higher accuracy than minimizing

entropy directly, meaning that our approach is outper-

forming than minimizing entropy directly.

5.6 Parameter sensitivity

There are three hyper-parameters k1, k2 and k3 involved in

our model. Although these hyper-parameters can be

determined via cross-valuation, insensitive parameter per-

formance is desirable in real-world scenarios. Therefore,

we conduct empirical parameter analysis for the three

hyper-parameters. Due to space limitation, we only con-

sider four visual domain adaptation tasks, i.e., SVHN !
MNIST, SYN ! SVHN, USPS ! MNIST and MNIST !
USPS. The initial parameters are chosen as k1 ¼ 2:0, k2 ¼
0:1 and k3 ¼ 0:15. Each time, only one parameter is

allowed to change with other parameters fixed. The

detailed results are shown in Fig. 7, and we give a brief

analysis here. For k1, it is a regularization term to guar-

antee the small cross-domain distribution divergence. As

shown in Fig. 7a, when k1 is close to 0, the target domain

features fail to align with the source domain features,

which leads to the poor performance on the target domain.

Therefore, a reasonable value of k1 should be larger than 1.

The hyper-parameter k2 is to balance the contribution of

target domain reconstruction. From Fig. 7b can be seen, a

large k2 may cause the model to pay more attention to

finding representations to reconstruct target data rather than

a common subspace for both source and target domains.

The reasonable choice can be k2 2 ð0; 1�. k3 controls the

contribution of generator loss of the label discriminator.

When k3 is extremely close to 0, the model suffers from the

significant performance degradation in all scenarios.

Therefore, a relatively large k3 (e.g., k3 [ 0:1) can be a

reasonable choice.

6 Conclusions and future work

In this paper, we propose Cross-Domain Minimization with

Deep Autoencoder (CDMDA) for unsupervised domain

adaptation, which performs a multitask learning strategy,

i.e., simultaneously learning label prediction on the source

domain and input reconstruction on the target domain via

the shared feature representations aligned with CORAL in

a unified framework. What is more, in order to correspond

with the cluster assumption, we further incorporate a label

discriminator to confuse the distribution of predicted target

labels with the categorical distribution via the adversarial

training process. Several domain adaptation experiments

on both visual and non-visual datasets show that our model

outperforms the competing unsupervised domain adapta-

tion methods in most cases. Also, we empirically demon-

strate the superiority of the label discriminator based on the

Fig. 6 Entropy (bottom half) and accuracy (upper half) with no

entropy minimization, label regularization and minimizing entropy

directly on SVHN ! MNIST scenario. All experiment settings are

same except the entropy optimization technique

(a) (b) (c)

Fig. 7 Parameters sensitivity analysis of the proposed method: a accuracy w.r.t. k1; b accuracy w.r.t. k2; c accuracy w.r.t. k3 on four visual

domain adaptation tasks. This figure is best viewed in color
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cluster assumption in the field of unsupervised domain

adaptation.

In the future, we plan to extend our proposal in the

following two aspects. (1) Extending the CDMDA to

multiple source domain adaptation method. (2) Extending

our method to time series data by incorporating Recurrent

Neural Network architecture.
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