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a b s t r a c t 

Recent years, domain adaptation has attracted much attention in the community of machine learning. 

In this paper, we mainly focus on the tasks of Joint Domain Matching and Classification ( JDMC ) under 

the framework of extreme learning machine (ELM). Specifically, our JDMC method is formulated by op- 

timizing both the output-adapted transformation and the cross-domain classifier, which allows us to si- 

multaneously (1) align the source domain and target domain in the feature space with correlation align- 

ment, (2) minimize the discrepancy between the source and target domain, measured in terms of both 

marginal and conditional probability distribution in the mapped feature space, (3) select informative fea- 

tures which behave similarly in both domains for knowledge transfer by imposing � 2,1 -norm on the out- 

put weights of ELM. In this respect, the proposed JDMC integrates the feature matching, feature selection 

and classifier design in a unified framework. Besides, an efficient alternative optimization strategy is ex- 

ploited to solve the joint learning model. To evaluate the effectiveness of the proposed method, extensive 

experiments on several commonly used domain adaptation datasets are presented, the results show that 

the proposed method significantly outperforms the non-transfer ELM networks and consistently outper- 

forms several state-of-art domain adaptation methods. 

© 2019 Published by Elsevier B.V. 
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1. Introduction 

There is a strong assumption in traditional pattern classification

methods that all the data are drawn from the same distribution,

which may not always hold in many real world scenarios. For ex-

ample, in cases where the training samples are difficult or expen-

sive to obtain, or the distribution of the samples changes over time,

we have to borrow knowledge from other different but highly re-

lated domains. To address these issues, domain adaptation which

aims to train a satisfactory classifier with limited target domain

samples and sufficient source domain samples, has emerged as a

new framework to solve this problem in the past decades, and re-

ceived more and more attention in recent years. As has been con-

cluded in [1,2] , the commonly used domain adaptation approaches

can be roughly classified into three categories: (1) feature match-

ing based domain adaptation, (2) instance reweighting based do-

main adaptation and (3) classifier-based domain adaptation. The
� This work was supported by the opening foundation of the State Key Labora- 

tory (No. 2014KF06), and the National Science and Technology Major Project (No. 

2013ZX03005013). 
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eature matching based methods are the most widely used domain

daptation approaches [3–17] , which aim to learn a shared feature

epresentation to minimize the distribution discrepancy between

he source domain and target domain. These methods can be fur-

her distinguished by: (a) the considered class of transformations,

hich are generally defined as projections [10,12,13] or non-linear

ransformations [9,11] (b) the types of discrepancy metric, such as

aximum Mean Discrepancy (MMD) [3,4] , Kullback Leibler diver-

ence (KL) [14] , Central Moment Discrepancy (CMD) [15] or other

imilarity metric [16,17] . The instance reweighting is another typ-

cal strategy for domain adaptation [18–20] , which considers that

ome source instances may not be relevant to the target even in

he shared subspace. Therefore it minimizes the distribution differ-

nces by reweighting the source samples and then learns from the

eweighted instances. The classifier-based domain adaptation rep-

esents another independent line of work, which adapts the pre-

rained source model to the target by regularizing the difference

f the parameters between the source and target domain [21–23] .

part from this, low rank [24–27] and discriminative feature learn-

ng [28] were also exploited for domain adaptation in recent work.

In spite of the fact that the above approaches are intuitively

esigned and effective for many domain adaptation problems,

hey also have some limitations [27,29] . For the feature matching

ased methods, they may not be effective for large domain shift
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roblems, in which the domain distribution difference cannot be

ppropriately reduced by cross-domain transformation [30] . Be-

ides, majority of this kind of methods only focus on the data rep-

esentation, followed by a selection of classifier, neglecting the fact

hat it would be better to combine the classifier design and the

eature matching process into a single paradigm [27] . For the in-

tance reweighting based adaptation methods, they require a strict

ssumption that the conditional distributions of source and target

omain are identical, and several instances in the source domain

an be reused for learning in the target domain [29] . The repre-

entative classifier based methods can be found in [21,22] , which

dapt the source classifier to the target by modifying the trained

odel parameters, but remain the data representation unchanged.

herefore, they are only effective for small domain shift problems

2] . 

To address the aforementioned limitations, we propose the joint

omain matching and classification approach based on the ELM

etwork in this paper. We would like to learn a high-quality do-

ain adaptation ELM classifier using a small number of labeled

arget domain samples and a large number of source domain sam-

les. On the one hand, to learn a shared representation, our model

imultaneously (1) aligns the source domain with the target do-

ain in the feature space, (2) minimizes the marginal and con-

itional distribution discrepancy in the projected feature space,

hich can also be seen as label space consistency and (3) learns

wo coupled projections for the output adaptation of the source

nd target domain. On the other hand, in contrast with the in-

tance reweighting based methods which need a strict assumption,

ur domain adaptation ELM is incorporated with � 2,1 -norm reg-

larization, which encourages joint feature selection. In this way,

he classifier is designed to only select the useful features that be-

ave similarly in both domains for knowledge transfer. Moreover,

he domain matching, feature selection and the classifier design

re integrated into a unified optimization framework to guarantee

n optimal solution. For ease of notation, the joint domain match-

ng and classification transfer ELM is referred to as JDMC. 

The contributions of this paper are summarized as follows: (1)

e are among the first to integrate the domain matching, feature

election and the classifier design in a unified framework, espe-

ially under the framework of ELM. (2) Unlike most of existing

orks which find the shared subspace by input adaptation, our

ethod exploits output adaptation in both domains. (3) Both the

arginal and the conditional distribution discrepancy are mini-

ized, while most of existing works minimize the marginal dis-

ribution difference only. (4) The � 2,1 -norm regularization is in-

orporated into the classifier design which encourages our model

o select informative features for knowledge transfer. (5) Exten-

ive experiments on several challenging datasets are performed,

hich demonstrate that our proposed method outperforms the

on-transfer ELM by a large margin and almost consistently out-

erforms several state-of-art domain adaptation methods. 

. Related work 

The Extreme learning machine (ELM) first proposed by Huang

t al. [31] , determining its input weights randomly, now plays an

mportant role in the community of machine learning due to its

ast learning speed, satisfactory performance and little human in-

ervention [32] . Therefore, since it was first put forward, various

xtensions have been proposed to make the original ELM model

ore efficient and suitable for specific applications, such as semi-

upervised and unsupervised ELM [33] , weighted ELM (WELM)

34] , cost-sensitive ELM [35] , online sequential ELM [36] , ELM

uto-encoder (ELM-AE) [37] , and multi-layer ELM [38] etc. 

It is not until recently that some researchers have extended

he classical ELM to domain adaptation ELM [5,6,23,39–41] . Zhang
t al. proposed a domain adaptation ELM to address the sensor

rift problem in the E-nose system [40] . In [6] , a unified subspace

ransfer framework based on ELM was proposed, which learns a

ubspace that jointly minimizes the mean distribution discrepancy

MMD) and maximum margin criterion (MMC). Uzair and Mian

39] proposed a blind domain adaptation ELM with extreme learn-

ng machine auto-encoder (ELM-AE), which does not need target

omain samples for training. Zhang and Zhang [5] proposed an

LM-based domain adaptation (EDA) for visual knowledge transfer

nd extended the EDA to multi-view learning. In EDA, the man-

fold regularization was incorporated into the objective function,

nd the author minimized the � 2,1 -norm of the output weights and

raining errors simultaneously. Besides, the classifier-based trans-

er learning ELM has also been proposed in [22,23] , which regu-

arized the difference of the source and target parameters. In addi-

ion, Salaken et al. [42] summarized all the available literatures in

he field of ELM-based transfer learning. 

There are also some joint domain adaptation methods that have

een studied extensively [3,5,10,30,43] , which are closely related to

ur work. The MMDT [10] jointly optimizes the classifier parame-

ers and the transformation matrix which maps the target features

nto a new feature space maximally aligned with the source. The

JM [3] performs joint feature matching and instance reweighting

or robust domain adaptation. The JCSL [43] jointly learns the new

omain-invariant representation as well as the prediction function

n the unsupervised setting. The DMM [30] jointly learns the trans-

er classifier and transferable knowledge (invariant feature repre-

entations and unbiased instance weights) in an end-to-end learn-

ng paradigm. In contrast with the above approaches which are

odeled on the basis of SVM, the EDA [5] is the one most re-

ated to our proposal, which learns the ELM classifier as well as

he category transformation by minimizing the � 2,1 -norm of the

utput weights and the training error simultaneously, whereas our

ethod also takes into account the domain distribution discrep-

ncy measured by MMD and feature space alignment. All these

ethods are somewhat similar, but also obviously distinct, to our

ethod. The connections between these existing works and our

roposal will be detailedly discussed in Section 4.6 . 

. Preliminaries 

.1. A Brief Review of ELM 

Considering a supervised learning problem where the train-

ng set with N samples and their corresponding targets are given

s { X , Y } = { (x i , y i ) | x i ∈ R 

d , y i ∈ R 

c , i = 1 , 2 , . . . , N} . Here x i ∈ R 

d is

he d -dimensional input data and y i ∈ R 

c is its associated one-hot

abel. The ELM networks learn a decision rule with the follow-

ng two stages. In the first stage, it randomly generates the input

eights w and bias b , and maps the original data from the input

pace into the L -dimensional feature space h (x i ) ∈ R 

L , where L is

he number of hidden nodes, h (x i ) = g(w 

� x i + b) , and g( · ) is the

ctivation function. In this respect, the only free parameter of the

LM is the output weights β ∈ R 

L ×c . In the second stage, the ELM

olves the output weights by minimizing both the prediction er-

ors and the norm of the output weights simultaneously, leads to

 

min 

β
L ( β) = 

1 

2 

‖ β‖ 

2 
F + 

λ

2 

N ∑ 

i =1 

‖ ξi ‖ 

2 
2 

s . t . h (x i ) β = y i − ξi , i = 1 , 2 , · · · . . . , N 

(1) 

here ξi is the prediction error with respect to the i -th training

amples, the first term of the objective function is the regulariza-

ion term preventing the network from overfitting. By substituting

he constrain into the objective function, the problem (1) can be
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simplified to such an unconstrain optimization problem: 

min 

β
L ( β) = 

1 

2 

‖ β‖ 

2 
F + 

λ

2 

‖ H β − Y ‖ 

2 
F (2)

where H = [ h (x 1 ) ; h (x 2 ) ; · · · . . . ; h ( x N )] ∈ R 

N×L . The optimal solu-

tion of β can then be analytically determined by setting the deriva-

tives of L ( β) with respect to β to be zero, i.e. 

∂L ( β) 

∂ β
= β + λH 

� (H β − Y ) = 0 (3)

Then, the output weights β can be given as 

β = 

(
H 

� H + 

I 

λ

)−1 

H 

� Y (4)

Here I is the identity matrix and λ is the regularization coefficient.

With the closed-form solution, the ELM model is remarkably effi-

cient and tends to reach a global optimum. 

3.2. Notations and Problem Definitions 

We summarize the frequently used notations and definitions as

below. 

Notations: For a matrix A ∈ R 

m ×n , let the i -th row of A denoted

by a i . The Frobenius norm of the matrix A is defined as 

‖ A ‖ F = 

√ 

m ∑ 

i =1 

n ∑ 

j=1 

a 2 
ij 

= 

√ 

m ∑ 

i =1 

‖ a i ‖ 

2 
2 

(5)

The � 2,1 -norm of a matrix, introduced in [44] firstly as rotation in-

variant � 1 -norm which ensures the row sparsity of a matrix, was

widely used for feature selection and structured sparsity regular-

izer [3,5,45,46] . It is defined as 

‖ A ‖ 2 , 1 = 

m ∑ 

i =1 

√ 

n ∑ 

j=1 

a 2 
ij 

= 

m ∑ 

i =1 

‖ a i ‖ 2 (6)

Definition 1 (Domain) . A domain D is composed of a feature space

X ∈ R 

d and a marginal distribution P (X ) . i.e. D = {X , P (X ) } , with

X ∈ X . 

Definition 2 (Task) . Given a specific domain D, a task T is com-

posed of a label space Y and a classifier f ( x ), i.e. T = {Y, f (x ) } ,
where f ( x ) can also be interpreted as the conditional probability

distribution Q (Y | X ) . 

Definition 3 (Domain adaption) . Given the source domain D s and

target domain D t , in which the data are insufficient to learn a

high-quality classification model. Domain adaptation aims to learn

a satisfied classifier f t : x t �y t with low expected target error on

D t , under the assumption that the source and target domain are

different but related P(X s ) � = P(X t ) and Q (Y s | X s ) � = Q (Y t | X t ) . 

To address the cross domain issues, most of existing works as-

sume that there exist a transformation T , such that the new rep-

resentation of the data can be matched, i.e. P s (T (X s )) ≈ P t (T (X t ))

and Q s (Y s | T (X s )) ≈ Q t (Y t | T (X t )) . The transformations T are

generally defined as projections [10,12,13] or non-linear transfor-

mations [9,11] , inferred by minimizing the distribution distance be-

tween the source and target domain [4] . Different from the con-

ventional domain adaption methods which perform the domain

transformation in the input space, in this paper, we also exploit

the output adaptation, which learns the transformation in the label

space such that Q s (T (Y s ) | X s ) ≈ Q t (T (Y t ) | X t ) . The output adap-

tation can also be regarded as the label space consistency con-

straint. 

Theoretical bound of the expected target error. Theoretical studies

have been developed for the bound on the target domain gener-

alization performance of a classifier trained in the source domain.
s analysed in [47] , the bound of the expected target error can be

stimated as: 

T (h ) ≤ ξS (h ) + d H 

(D s , D t ) + C (7)

ere h is the learned hypothesis which can also be interpreted

s the predictor function. ξT ( h ) and ξS ( h ) are the predict error in

he target domain and source domain, respectively. d H 

(D s , D t ) rep-

esents the H -divergence between the source and target domain,

hich can be minimized by reducing the distribution discrepancy.

 = ξT (h ∗) + ξS (h ∗) is the joint error on both domains with the

deal hypothesis h ∗ = arg min h (ξS (h ) + ξT (h )) , which can be dis-

egarded because it is considered to be negligibly small [48] . The

eneralization bound theory states that a low target error can be

uaranteed if both the source error and the domain distribution

iscrepancy are small. 

. Proposed method 

In this section, we present the proposed ELM based Joint Do-

ain Matching and Classification (JDMC) method and its learning

lgorithm in detail. 

Suppose we have a source domain D s = { (x 1 s , y 
1 
s ) , . . . , (x m 

s , y 
m 

s ) } ,
nd a target domain D t = { (x 1 t , y 

1 
t ) , . . . , (x n t , y 

n 
t ) } . Generally, in the

upervised domain adaptation setting, n is small and m 	 n . With

he aim of minimizing both the source error and domain dis-

ribution discrepancy in (7) , the proposed JDMC method is for-

ulated by optimizing both the two coupled projections ( P s for

ource domain and P t for target domain) and the output weights

jointly, such that (1) the training errors on both the source and

arget domain are small, (2) the distribution discrepancy between

he source and target domain is minimized, (3) the informative

eatures that behave similarly on both domains are selected for

nowledge transfer and (4) the adaptation is performed in the la-

el space by the learned two coupled projections. Suppose the pre-

iction function (ELM classifier) be f = β� · h (x ) , where h(x) is the

utput of the hidden layer. Then, the general framework of JDMC

an be formulated as 

min 

, P s , P t 

m ∑ 

i =1 

� ( f (x s ) , P s y s ) + 

n ∑ 

i =1 

� ( f (x t ) , P t y t ) + J M M D ( X 

s , X 

t ) 

+ ‖ β‖ 2 , 1 + �( P s , P t ) (8)

here the first two terms correspond to the training errors of the

ource domain and the target domain, respectively. P s y s and P t y t 
epresent the adaptation in the output space for the source and

arget domain. J MMD ( X 

s , X 

t ) indicates the domain matching loss

easured by Maximum Mean Discrepancy (MMD) [4,6,48] , and the

ast term indicates the regularization regarding to the output trans-

ormation matrices. We will interpret each term of ( 8 ) in the fol-

owing subsections. 

.1. Feature space pre-alignment 

Let H s ∈ R 

n ×L and H t ∈ R 

m ×L denote the outputs of the hid-

en layer corresponding with the source and target domain. Since

he input parameters of the ELM networks are randomly initial-

zed, the source features and target features in the hidden layer

an be calculated in advance. Therefore, the distribution discrep-

ncy in the feature space can be easily reduced by domain align-

ent. To achieve feature space pre-alignment which could bene-

t the subsequent processing, the correlation alignment (CORAL)

12] is considered, which is one of the most popular domain

lignment methods due to its frustratingly easy implementation

nd considerable performance. The aim of the correlation align-

ent is to minimize the distance between the second order co-

ariance of the source and target features by applying a linear
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ransformation to the source features H s = H s A . Suppose C s and

 t denote the covariance matrices of the source and target fea-

ure space, i.e. C s = Cov (H s ) = H 

� 
s J n H s and C t = Cov (H t ) = H 

� 
t J m 

H t ,

here J n = I n − 1 
n 1 n 1 

� 
n and J m 

= I m 

− 1 
m 

1 m 

1 � m 

denote the central-

zed matrix, 1 denotes an all-one column vector. Let ˜ C s denotes

he covariance matrices of the transformed source features H s A ,

.e. ˜ C s = Cov (H s A ) = A 

� H 

� 
s J n H s A = A 

� C s A . Then, the domain shift

etween the transformed source and target feature space can be

easured by the following function 

in 

A 
| ̃  C s − C t ‖ 

2 
F = ‖ A 

� C s A − C t ‖ 

2 
F (9)

he solution of (9) can be given as 

 = 

(C t + αI ) 
1 
2 

(C s + αI ) 
1 
2 

(10) 

ere αI is the regularization term which guarantees the full rank

f the covariance matrix, where α is set to 1 as recommended in

12] . In this way, the feature space could be easily pre-aligned by

pplying H s = H s A . 

.2. Domain matching 

Recall that, even though the source and target domain have

een pre-aligned in the feature space by CORAL, the distribu-

ion divergence, especially the conditional distribution divergence

s still significantly large. Intuitively, a natural idea is that the fea-

ures of two domains H s and H t could be more similar after being

apped by the output weights β [6] . In this respect, it is reason-

ble to reduce the domain distribution discrepancy between the

apped source and target feature space. Hence, we adopt the Max-

mum Mean Discrepancy (MMD) as the distance measure, which

omputes the distance between the empirical expectations of the

apped source and target features. It is formulated as 

in 

β
‖ 

1 

m 

∑ 

x i ∈X s 
h s (x i ) β − 1 

n 

∑ 

x j ∈X t 
h t (x j ) β‖ 

2 
F (11)

here h s ( x i ) and h t ( x j ) denote the outputs of the hidden layer in

he source and target domain, respectively. Except for minimizing

he marginal distribution distance with the MMD criterion, in [4] ,

t has also been proposed to reduce the conditional probability dis-

ribution by making the intra-class centroid of two distributions

loser. For the domains with c class, k ∈ { 1 , 2 , . . . , c} , we follow

heir idea to minimize the conditional distribution discrepancy as

in 

β

c ∑ 

k =1 

‖ 

1 

m 

(k ) 

∑ 

x i ∈X (k ) 
s 

h s (x i ) β − 1 

n 

(k ) 

∑ 

x j ∈X (k ) 
t 

h t (x j ) β‖ 

2 
F (12)

here m 

( k ) and n ( k ) are the number of samples in the k th class

n the source and target domain, respectively. X 

(k ) 
s = { x i | x i ∈ D s ∧

 (x i ) = k } is the set of samples belonging to class k in the source

omain, and X 

(k ) 
t = { x j | x j ∈ D t ∧ y (x j ) = k } is the set of sam-

les belonging to class k in the target domain. By incorporating

11) into (12) , the final formulation of the MMD minimization term

an be represented as 

in 

β

c ∑ 

k =0 

‖ 

1 

m 

(k ) 

∑ 

x i ∈X (k ) 
s 

h s (x i ) β − 1 

n 

(k ) 

∑ 

x j ∈X (k ) 
t 

h t (x j ) β‖ 

2 
F (13)

ere, m 

(0) = m, n (0) = n, X 

(0) 
s = X s , X 

(0) 
t = X t . (13) can be further

ritten compactly as 

in 

β

c ∑ 

k =0 

∥∥∥∥∥∥
⎛ ⎝ 

1 

m 

(k ) 

∑ 

x i ∈X (k ) 
s 

h s (x i ) −
1 

n 

(k ) 

∑ 

x j ∈X (k ) 
t 

h t (x j ) 

⎞ ⎠ β

∥∥∥∥∥∥
2 

F 

(14) 
 min 

β

c ∑ 

k =0 

‖ (μ(k ) 
s − μ(k ) 

t ) β‖ 

2 
F (15) 

here μ(0) 
s and μ(0) 

t denote the centroid of the source and target

eature space, μ(k ) 
s and μ(k ) 

t ( k = 1 , 2 , . . . , c) denote the centroid of

he k th class in the source and target feature space. For simplifi-

ation, we define �μ(k ) = μ(k ) 
s − μ(k ) 

t , then the final distribution

iscrepancy minimization term can be represented as 

in 

β

c ∑ 

k =0 

‖ �μ(k ) β‖ 

2 
F (16) 

.3. Joint learning model 

In this paper, we aim to jointly learn the transformations as

ell as the cross domain ELM classifier, while minimizing the

istribution discrepancy between the source and target domain,

nd selecting the informative features for knowledge transfer. To

chieve this goal, the proposed JDMC model can be formulated

s 

min 

, P s , P t 
L ( β, P s , P t ) = 

1 

2 

‖ H t β − P t Y t ‖ 

2 
F + 

λ1 

2 

‖ H s β − P s Y s ‖ 

2 
F 

+ 

λ2 

2 

c ∑ 

k =0 

‖ �μ(k ) β‖ 

2 
F + 

λ3 

2 

‖ β‖ 2 , 1 + 

λ4 

2 

(‖ P s − I ‖ 

2 
F + ‖ P t − I ‖ 

2 
F )

(17)

here λ1 , λ2 , λ3 and λ4 are trade-off parameters to balance the

ontributions of the four regularizers. P t ∈ R 

n ×n and P s ∈ R 

m ×m 

re two transformations applied to the output space. The first two

erms tend to learn the adaptive ELM classifier and the cross-

omain transformations simultaneously. Specifically, the first term

orresponds to the training errors in the target domain, while the

econd term is the regularization with respect to the source do-

ain training errors. As stated above, the third regularization term

ncourages small marginal and conditional distribution divergence

easured by MMD criterion. Besides, the last term is the regular-

zer w.r.t. the two coupled projections, which controls the output

pace distortion during transformation. 

It is worth noting that the � 2,1 -norm instead of the Frobenius

orm is imposed on the domain adaptive classifier as a regular-

zer. Benefiting from the property that the � 2,1 -norm regulariza-

ion guarantees the row sparsity of the output weights β, our joint

earning model tends to select the informative features for knowl-

dge transfer. 

.4. Learning algorithm 

As can be seen in (17) , our goal is to jointly learn the cross do-

ain classifier β as well as the two coupled projections P s and P t .

ince there are three free parameters to be solved, this optimiza-

ion problem cannot be directly solved like problem (2) . Therefore,

he coordinate descent method, which is an alternative optimiza-

ion strategy that optimizes one variable while fixing the other

ree variables is considered. The following three main steps are in-

luded. 

Step 1. Optimizing on β: In the first step, we fix the projec-

ion matrix as P s = I m ×m 

and P t = I n ×n . Then, the sub-problem
∗ = arg min β L ( β, P s , P t ) can be solved by setting the derivative of

bjective function w.r.t. β to be zero. Then we have 

∂L ( β, P s , P t ) 

∂ β
= H 

� 
t (H t β − P t Y t ) + λ1 H 

� 
s (H s β − P s Y s ) 

+ λ2 U β + λ3 D β = 0 (18) 



318 C. Chen, B. Jiang and Z. Cheng et al. / Neurocomputing 349 (2019) 314–325 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2: Learning Algorithm of the JDMC Method. 

Input : Training samples of source and target domain 

D s = (X s , Y s ) , D t = (X t , Y t ) ; Regularization parameters 

{ λ1 , λ2 , λ3 , λ4 } ; Number of hidden nodes L . 

Output : Model parameters { β, P s , P t } . 
1 . Initialize the networks with randomly selected input 

weights w and bias b; 

2 . Calculate the hidden layer output matrix H s and H t with 

the randomly initialized input parameters; 

3 . Calculate the transformation matrix A according to (10), 

and then align the feature space between the source domain 

and target domain by H s = H s A ; 

4 . Set t=0. Initialize P s = I m ×m 

, and P t = I n ×n ; 

repeat 

Update βt+1 according to Algorithm 1 ; 

Update P 

t+1 
s according to (24) ; 

Update P 

t+1 
t according to (27) ; 

t = t + 1 ; 
until Converges ; 

 

W  

o  

s  

p  

p  

u  

r  

c  

c  

f  

f  

m  

A

4

 

A

T  

f

P  

p  

o  

t  

t

 

s  

t  

t  

t  

c

 

p  

o  

g

 

⇒ (H 

� 
t H t + λ1 H 

� 
s H s + λ2 U + λ3 D ) β = (H 

� 
t P t Y t + λ1 H 

� 
s P s Y s ) 

(19)

where U ∈ R 

L ×L is computed as U = 

c ∑ 

k =0 

�μ(k ) � �μ(k ) . Note that

‖ β‖ 2, 1 is a non-smooth function at zero, therefore, we compute

its sub-gradient instead [3,45,46] . i.e. 
∂‖ β‖ 2 , 1 

∂ β
= 2 D β, where D is a

diagonal sub-gradient matrix with the i th element as 

D ii = 

1 

2 ‖ β
i ‖ 2 + ε

(20)

Here, βi denotes the i th row of β, ε set as a very small constant to

prevent the dividend to be zero. With the fixed matrix D, β could

be solved according to (19) , as 

β = (H 

� 
t H t + λ1 H 

� 
s H s + λ2 U + λ3 D ) −1 

×(H 

� 
t P t Y t + λ1 H 

� 
s P s Y s ) (21)

Recall that the sub-gradient matrix D is dependent on the un-

solved parameters β. Therefore, we employ an alternative opti-

mization strategy to solve β according to (21) and (20) . In each

iteration, only one parameter is updated with the other one fixed.

The algorithm is summarized in Algorithm 1 . It is worth noting

Algorithm 1: An efficient iterative algorithm to solve β. 

Input : H s , H t , P s , P t , Y s , Y t , regularization parameters 

{ λ1 , λ2 , λ3 } 
Output : β
Set t=0. Initialize D 

0 as an identity matrix I L ×L ; 

Compute matrix U = 

c ∑ 

k =0 

�μ(k ) � �μ(k ) ; 

repeat 

Update βt+1 according to (21) 

Update D 

t+1 according to (20) 

t = t + 1 
until Converges ; 

that the iterative procedures will be terminated once the number

of iterations reaches T max or the output weight β tends to conver-

gence. The convergency of Algorithm 1 can be easily proved similar

to [3,45] . 

Step 2. Optimizing on P s : With the fixed β and P t , the sub-

problem P 

∗
s = arg min P s L ( β, P s , P t ) can be easily solved by taking

the derivative of (17) with respect to P s to be zero. We have 

∂L ( β, P s , P t ) 

∂ P s 
= (P s Y s − H s β) Y 

� 
s + λ4 (P s − I ) = 0 (22)

⇒ P s (Y s Y 

� 
s + λ4 I ) = H s βY 

� 
s + λ4 I (23)

which leads to 

P s = (H s βY 

� 
s + λ4 I )(Y s Y 

� 
s + λ4 I ) 

−1 (24)

Step 3. Optimizing on P t : Similar to step 2, the sub-problem

P 

∗
t = arg min P t L ( β, P s , P t ) can be similarly solved by taking the

derivative of (17) with respect to P t to be zero. i.e. 

∂L ( β, P s , P t ) 

∂P t 
= (P t Y t − H t β) Y 

� 
t + λ4 (P t − I ) = 0 (25)

⇒ P t (Y t Y 

� 
t + λ4 I ) = H t βY 

� 
t + λ4 I (26)

leads to 

P t = (H t βY 

� 
t + λ4 I )(Y t Y 

� 
t + λ4 I ) 

−1 (27)
The overall learning algorithm is summarized in Algorithm 2 .

ith the randomly initialized input parameters, the hidden layer

utputs of the source and target ELM model, which are repre-

ented as H s and H t , could be calculated beforehand. Then, we

re-align the two domains using the correlation alignment by ap-

lying H s = H s A according to (10) . After that, in each iteration, we

pdate β with current P s and P t , then, update P s with the cur-

ent calculated β and P t , lastly update P t with the current cal-

ulated β and P s . Note that all of the sub-problems involved are

onvex (see Section 4.5 for detailed proof), i.e. the joint objective

unction reaches the optimum in each iteration with the closed-

orm solution. Hence, the learning algorithm will converge to a

inimal after limited number of iterations. The convergency of

lgorithm 2 will be analysed in Section 4.5 . 

.5. Convergence analysis 

In this section, we provide a brief convergence analysis of

lgorithm 2 . We start by giving the following theorem. 

heorem 1. All the three sub-problems involved in the joint objective

unction (17) are convex. 

roof. For the sub-problem 1: β∗ = arg min β L ( β, P s , P t ) , when the

arameters { P s , P t } are fixed, it is straightforward to show that the

bjection function is convex with respect to β. According to (18) ,

he second order derivative of the objective function with respect

o β can be easily calculated as: 

∂L 

2 ( β, P s , P t ) 

∂ β
2 

= H 

� H + λ1 H 

� 
s H s + λ2 U + λ3 D > 0 (28)

ince U = 

c ∑ 

k =0 

�μ(k ) � �μ(k ) and D defined in (20) is a diagonal ma-

rix, therefore, all the four terms in (28) are positive definite. i.e.

he second order derivative of the objective function with respect

o β is positive definite, hence the joint objective function (17) is

onvex to β. 

For the sub-problem 2: P 

∗
s = arg min P s L ( β, P s , P t ) , when the

arameters { β, P t } are fixed, as can be seen in (22) , the second

rder derivative of the objective function with respect to P s can be

iven as: 

∂L 

2 ( β, P s , P t ) 

∂P 

2 
= Y 

� 
s Y s + λ4 I > 0 (29)
s 
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Table 1 

Comparison between most related works. 

Methods MMDT TJM JCSL DMM EDA JDMC 

Subspace alignment o o � o o � 

Marginal adaptation o � o � o � 

Conditional adaptation o � o o o � 

Classifier design � o � � � � 

Input adaptation � � o � o o 

Output adaptation o o o o � � 

Feature selection o o o o � � 

Instance reweighting o � o � o o 

ELM framework o o o o � � 

� Denotes this strategy is considered in the method, and o denotes this strategy 

is not considered in the method. 
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1 https://github.com/chenchao666/JDMC . 
2 http://ama.liglab.fr/ ∼amini/DataSets/Classification/Multiview/ 

ReutersMutliLingualMultiView.htm . 
t is clear that the second order derivative of the objective func-

ion with respect to P s is positive definite, i.e. the sub-problem 2

s convex. Similar to the sub-problem 2, the sub-problem 3 is also

onvex. Then, Theorem 1 is proven. �

heorem 2. The objective function in (17) is monotonically non-

ncreasing in each iterations in Algorithm 2 . 

roof. As stated above, all the three sub-problems involved in the

oint objective function are convex. Therefore, the objective func-

ion (17) can be minimized at each iteration. Then, we have the

ollowing three claims. 

Claim 1: L ( βt+1 
, P 

t 
s , P 

t 
t ) ≤ L ( βt 

, P 

t 
s , P 

t 
t ) 

Claim 2: L ( βt+1 
, P 

t+1 
s , P 

t 
t ) ≤ L ( βt+1 

, P 

t 
s , P 

t 
t ) 

Claim 3: L ( βt+1 
, P 

t+1 
s , P 

t+1 
t ) ≤ L ( βt+1 

, P 

t+1 
s , P 

t 
t ) 

Combining the three claims, we have 

L ( β
t+1 

, P 

t+1 
s , P 

t+1 
t ) ≤ L ( β

t+1 
, P 

t+1 
s , P 

t 
t ) 

≤ L ( β
t+1 

, P 

t 
s , P 

t 
t ) ≤ L ( β

t 
, P 

t 
s , P 

t 
t ) 

(30) 

hen, Theorem 2 is proven. Note that we also conduct empirical

onvergency evaluation in Section 5.5 . �

.6. Connections to existing works 

In this section, we analysis the connections between our pro-

osal and other highly related methods. 

Connections to domain alignment methods. The well-known Sub-

pace Alignment (SA) [13] aims to learn a linear transformations

hat minimizes the Frobenius norm of the difference between

he subspaces of source and target domain, while the Correlation

lignment (CORAL) [12] minimizes the domain shifts by aligning

he second order statistics of the source and target distributions.

ven though the subspace bias or the second order statistics can be

ffectively aligned by these domain alignment methods, the source

nd target distributions in the aligned subspace can still be differ-

nt [49] . In our JDMC, we not only align the second order statis-

ics in the feature space but also match the marginal and condi-

ional probability distributions in the mapped feature space, which

uarantees lower domain distribution discrepancy. Besides, we in-

egrate the domain matching and classifier design into a unified

ramework. 

Connections to transform-based methods. Most existing

ransform-based domain adaption methods perform the domain

ransformation in the input space [3,10,30] , while our approach

xploits the adapted transformation in the output space, such that

 s (T (Y s ) | X s ) ≈ Q t (T (Y t ) | X t ) . With the output adaptation, the

oint learning model is proved to be joint convex with respect to

ach model parameter. Therefore, the algorithm is guaranteed to

onverge to the optimum with the closed-form solution, while

any other joint learning models with the input adaptation

3,10,30] do not have this property. 

Connections to joint learning methods. To the best of our knowl-

dge, the works most related to our JDMC are [3,5,10,30,43] . All

hese methods integrate more than two strategies for cross-domain

daptation. The detailed comparison is illustrated in Table 1 . As can

e seen, our JDMC simultaneously exploits (1) subspace alignment

n the feature space, (2) distribution matching of both marginal

nd conditional distribution in the mapped feature space, (3) out-

ut adaptation, (4) informative feature selection and (5) classifier

esign in a unified framework of ELM. 

. Experiments 

In this section, we evaluate our proposed JDMC method on

wo challenging real-world datasets. We start by introducing the

atasets as well as baseline approaches, then follow by discussing
he results compared with various baselines, and finish by provid-

ng parameter sensitivity analysis and convergency evaluation. The

ource code of our implementation has been released online. 1 

.1. Datasets and setup 

Since the ELM is also a powerful regressor [32] , the proposed

DMC is supposed to be applicable for both classification and re-

ression tasks [50,51] (when JDMC is used for regression tasks,

he larger λ4 is recommended to prevent the label space over dis-

orted). However, following the setup of [3,5,10,43] , we only eval-

ate our approach on classification tasks. Two types of domain

daptation problems are considered: object recognition and text

ategorization. A summary of the properties of each domain con-

idered in our experiments is provided in Table 2 . 

Caltech-Office dataset. This dataset [9] consists of Office [8] and

altech-256 [52] datasets. It contains images from four different

omains: Amazon (product images download form amazon.com),

ebcam (low-resolution images taken by a webcam), Dslr (high-

esolution images taken by a digital SLR camera) and Caltech . Ten

ommon categories are extracted from all four domains with each

ategory consisting of 8–151 samples, and 2533 images in total.

everal factors (such as image resolution, lighting condition, noise,

ackground and viewpoint) cause the shift of each domain. Fig. 1

ighlights the differences among these domains with several se-

ected images from categories of keyboards and headphones. Dur-

ng the experiments, the SURF-BoW image features ( SURF in short)

rovided by Hoffman et al. [9] are considered, which encode the

mages with 800-bin histograms with the codebook trained from a

ubset of Amazon images using SURF descriptors [53] . These his-

ograms are then normalized to be zero means and unit variance

n each dimension. 

Multilingual reuters collection dataset. This dataset 2 [54] , which

s collected by sampling from the Reuters RCV1 and RCV2 collec-

ions, contains feature characteristics of 111,740 documents origi-

ally written in five different languages and their translations (i.e.

nglish, French, German, Italian, and Spanish), over a common set

f 6 categories (i.e. C15, CCAT, E21, ECAT, GCAT, and M11). Docu-

ents belonging to more than one of the 6 categories are assigned

he label of their smallest category. Therefore, there are 12–30K

ocuments per language, and 11-34K documents per category. All

ocuments are represented as a bag of words and then the TF-IDF

eatures are extracted. 

Baselines We compare the results with the following baselines

nd competing methods that are well adapted for domain shift

cenarios: 

https://www.github.com/chenchao666/JDMC
http://ama.liglab.fr/~amini/DataSets/Classification/Multiview/ReutersMutliLingualMultiView.htm
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Table 2 

Summary of the domains used in the experiments. 

Problem Domains Dataset # Samples # Features # Classes Abbr. 

Objects Amazon Office 958 800 10 A 

Webcam Office 295 800 10 W 

DSLR Office 157 800 10 D 

Caltech Caltech-256 1123 800 10 C 

Texts English Multilingual 18,758 11,547 6 EN 

French Multilingual 26,648 11,547 6 FR 

German Multilingual 29,953 11,547 6 GR 

Italian Multilingual 24,039 11,547 6 IT 

Spanish Multilingual 12,342 11,547 6 SP 

Fig. 1. Selected images from Office-Caltech dataset and Caltech-256 dataset. Amazon, Dslr and Webcam are selected from Office dataset while Caltech is selected from Caltech- 

256 dataset. It is obvious that domain shifts are significant across different domains. (Best viewed in color.) 
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3 https://people.eecs.berkeley.edu/ ∼jhoffman/domainadapt/ . 
• SVM s : It utilizes sufficient labeled data from source domain to

train a standard support vector machine. 

• SVM t :It utilizes limited labeled data from target domain to

train a standard support vector machine. 

• ELM s :It utilizes sufficient labeled data from source domain to

train a extreme learning machine. 

• ELM t : It utilizes limited labeled data from target domain to

train a extreme learning machine. 

• GFK [9] : It integrates an infinite number of subspaces that char-

acterize changes in geometric and statistical properties from

the source to the target domain. We apply it to both source

and target domain and use one-Nearest Neighbor as classifier. 

• MMDT [7,10] : It jointly learns the cross-domain classifier and

linear transformation that maps features from the target do-

main into the source domain. 

• CDLS [55] : It is able to identify representative cross-domain

samples, including the unlabeled ones in the target domain, for

performing adaptation. 

Regarding the optimal hyper-parameters, they are de-

termined in two steps by applying multiple experiments

using grid search strategy. Firstly, we search the approx-

imate range of all the hyper-parameters in the range of

{ 0 . 0 0 01 , 0 . 0 01 , 0 . 01 , 0 . 1 , 1 , 10 , 100 , 10 0 0 , 10 , 0 0 0 } , after that the

candidate parameters can be determined accordingly. Specifically,

λ1 , λ2 are selected from {0.01, 0.05, 0.1, 0.5, 1}, λ3 is selected

from {1, 5, 10, 20, 30, 40, 50, 100}, and λ4 is chosen in the

range of {1, 10, 50, 100, 200, 500, 1000}. During experiments, the

hyper-parameters are searched in the range of these values and

fixed as the optimal one to get the best results, and the number

of hidden nodes is set as L = 600 in all experiments. 

5.2. Cross-domain object recognition 

For our first experiment, we use the Caltech-Office domain adap-

tation benchmark dataset to evaluate our method on the real world

computer vision adaptation task. 
.2.1. Experiment setup 

Following the setup of [8–10] , the number of selected labeled

ource samples per class for amazon, webcam, dslr and caltech is

0, 8, 8, and 8, respectively. Instead, when they are used as target

omain, 3 labeled target samples are selected. We use the same

0 random train/test splits download from the website 3 provided

y the authors [10] for fair comparison and report averaged results

cross them. 

For our method, the optimal parameters are searched in the

ange of candidate parameters, and the best results are reported.

or the other baseline methods, we use the recommended param-

ters. 

.2.2. Results 

As listed in Table 3 , we report the mean and standard devia-

ion of classification accuracies for all methods on the Office-Caltech

ataset. Note that the results in the same column are based on

he same 20 random trials for fair comparison. As can be seen, our

roposed method shows competitive performance and outperforms

ll the other methods in 8 out of the 12 individual domain shifts. It

s worth noting that our JDMC significantly outperforms the other

ompeting methods when amazon is used as source or target do-

ain. We believe the reason is that the domain shift between ama-

on and dslr pair or amazon and webcam pair is more significant

han other domain shifts, since the performance discrepancy be-

ween ELM s and ELM t is larger than other pairs like webcam and

slr . Similarly, we observe that on the A → C, D → W and W → D

omain shifts, our JDMC performs somehow unsatisfactory. We be-

ieve it must be caused by the small domain divergence between

hese domain shifts, as the SVM s and ELM s which are only trained

n the source domain achieve the highest accuracy. Therefore, we

an draw the conclusion that our proposed JDMC is more effective

or large domain discrepancy problems. 

We also visualize the effectiveness of the proposed JDMC via

he confusion matrix. Fig. 2 illustrates the confusion matrices of

https://people.eecs.berkeley.edu/~jhoffman/domainadapt/


C. Chen, B. Jiang and Z. Cheng et al. / Neurocomputing 349 (2019) 314–325 321 

Table 3 

Recognition accuracies (%) on the Caltech-Office datasets with SURF feature. 

Method A → C A → D A → W C → A C → D C → W D → A D → C D → W W → A W → C W → D 

SVM S 38.6 ± 0.4 33.4 ± 1.3 34.8 ± 0.8 38.5 ± 0.6 33.9 ± 1.0 30.2 ± 1.0 36.4 ± 0.5 32.8 ± 0.3 76.6 ± 0.8 34.1 ± 0.6 29.6 ± 0.6 67.9 ± 0.7 

SVM T 34.2 ± 0.6 55.5 ± 0.8 63.1 ± 0.8 47.0 ± 1.1 55.3 ± 1.1 59.4 ± 1.4 46.5 ± 1.0 33.4 ± 0.6 60.3 ± 1.2 48.5 ± 0.9 31.1 ± 0.8 53.5 ± 1.0 

ELM S 36.8 ± 0.4 31.2 ± 1.2 31.0 ± 1.1 38.1 ± 0.7 35.2 ± 1.0 30.3 ± 1.3 36.5 ± 0.6 30.7 ± 0.5 78.2 ± 0.5 32.7 ± 0.7 29.1 ± 0.5 72.8 ± 0.9 

ELM T 33.2 ± 0.7 54.5 ± 1.0 65.5 ± 1.1 48.8 ± 0.9 56.6 ± 0.8 64.8 ± 1.4 48.6 ± 0.9 34.0 ± 0.7 65.9 ± 0.8 49.9 ± 1.0 31.4 ± 0.9 57.6 ± 0.8 

GFK 36.0 ± 0.5 50.7 ± 0.8 58.6 ± 1.0 44.7 ± 0.8 57.7 ± 1.1 63.7 ± 0.8 45.7 ± 0.6 32.9 ± 0.5 76.5 ± 0.5 44.1 ± 0.4 31.1 ± 0.6 70.5 ± 0.7 

MMDT 36.4 ± 0.8 56.7 ± 1.3 64.6 ± 1.2 49.4 ± 0.8 56.5 ± 0.9 63.8 ± 1.1 46.9 ± 1.0 34.1 ± 0.8 74.1 ± 0.8 47.7 ± 0.9 32.2 ± 0.8 64.0 ± 0.7 

CDLS 28.7 ± 1.0 54.4 ± 1.3 60.5 ± 1.1 41.0 ± 1.0 53.2 ± 1.1 61.6 ± 0.9 49.1 ± 0.8 35.7 ± 0.6 75.1 ± 0.8 49.8 ± 0.7 34.6 ± 0.6 64.0 ± 0.7 

JDMC 36.1 ± 0.75 58.5 ± 0.7 67.6 ± 0.9 52.4 ± 0.9 59.5 ± 1.0 65.9 ± 1.0 52.0 ± 0.8 36.4 ± 0.6 67.8 ± 1.0 53.3 ± 0.7 33.6 ± 0.9 60.4 ± 1.0 

Bold indicates the best result for each domain split. Italic indicates the group of results that are close to the best performing result. (A: Amazon, C: Caltech, D: DSLR and W: 

Webcam). 

Fig. 2. Confusion matrices of the amazon → webcam domain adaptation experiment. Left: ELM model trained with source domain only. Middle: our proposed JDMC method 

trained with source and target domain. Right: ELM model trained with target domain only. 
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4 The splits we used can be downloaded from https://github.com/ 

BoyuanJiang/PTELM/tree/master/DataSplits . 
5 The PCA uses randomized singular value decomposition algorithm as SVD solver 

for efficiency. 
LM s , JDMC and ELM t on amazon → webcam domain shift experi-

ent. Through the confusion matrix of ELM s , which is trained with

0 labeled source samples per class, we find that the source only

odel is heavily confused about several classes. It also reveals the

arge domain shift between amazon and webcam and gives expla-

ation for the performance discrepancy between ELM s and ELM t .

n the other hand, the confusion matrix of ELM t , which trained

ith 3 labeled target samples per class, is also somewhat confused

ue to few labeled training samples. In contrast, as can be seen

n Fig. 2 (b), the off-diagonal elements of the confusion matrix are

lose to zero, which demonstrates that our JDMC can effectively

ransfer the source domain information into the target to train a

igh-quality cross-domain classifier. 

.3. Cross-domain text categorization 

For the second experiment, we utilize the Multilingual Reuters

ollection dataset to evaluate our method on the text categoriza-

ion task. 

.3.1. Experiment setup 

In the text dataset, documents written in different languages

an be viewed as different domains. We take Spanish as target do-

ain, and other four languages ( English, French, German and Ital-

an ) as individual source domain. Therefore, there are four domain

hifts in total, they are EN → SP, FR → SP, GR → SP and IT → SP, re-

pectively. For each category, we randomly sample 100 labeled

raining documents from source domain and m labeled training

ocuments from target domain, where m = 5, 10, 15 and 20, re-
pectively. And the remaining documents in the target domain are

sed as the test set. 4 Note that the dimensions of the original TF-

DF features are up to 11,547, in order to fairly compare our method

ith other competing methods, we perform principal components

nalysis 5 for dimension reduction and the dimensions after PCA

re 40. The parameters are determined in the same way as the

rst experiment. 

.3.2. Results 

We give the box plot of all methods on the Multilingual Reuters

ollection dataset when m = 10 and 20 in Fig. 3 except SVM s and

LM s , since these two methods perform much worse than the

ther methods. It is obvious that our proposed JDMC method con-

istently outperforms the competing methods under both settings.

ompared with the non-transfer ELM, the performance improve-

ent is nearly 10%. It is also interesting to note that GKF works

ven worse than ELM t and SVM t . A possible explanation is that

FK is put forward for unsupervised domain adaptation without

tilizing the label information of target training samples. 

We also plot means and standard deviations of all methods over

ifferent number of labeled target samples (5, 10, 15 and 20, re-

pectively) in Fig. 4 . From the figure, it can be seen that the per-

ormance of all methods is improved with the increase of the num-

er of labeled target samples, and our JDMC method performs best

https://www.github.com/BoyuanJiang/PTELM/tree/master/DataSplits


322 C. Chen, B. Jiang and Z. Cheng et al. / Neurocomputing 349 (2019) 314–325 

Fig. 3. Box plot illustration of different methods on cross-domain text categorization. Left:we choose 10 labeled target samples per category. Right: we choose 20 labeled 

target samples per category. 

a b c d

Fig. 4. Classification accuracies of all methods with varied labeled target data per class (i.e. m = 5, 10, 15 and 20) on the Multilingual Reuters Collection dataset. Note that 

Spanish is considered as target domain, while the source domains are selected from (a) English , (b) French , (c) German and (d) Italian , respectively. 
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in most cases. Note that the MMDT performs slightly better than

our method among two domain shifts, and much better than other

baselines when m = 5 , which demonstrates that MMDT is more

suitable when very limited number of labeled target samples are

available. Besides, another key insight from the figure is that our

method is more stable than the competing methods with lower

standard deviations. 

5.4. Parameter sensitivity 

In this section, we conduct empirical parameter sensitivity anal-

ysis of four regularization parameters λ1 , λ2 , λ3 and λ4 involved

in our method. Due to space limitation, only two domain shifts,

i.e. the amazon → webcam from Office-Caltech dataset and IT → SP

from the Multilingual Reuters Collection dataset are selected for

sensitivity analysis. The initial parameters are chosen as λ1 = 0 . 1 ,

λ2 = 1 , λ3 = 20 and λ4 = 100 , each time, only one parameter is

allowed to change with the other parameters fixed. The results are

shown as Fig. 5 and we give a brief analysis here. For λ1 , it is used

for balancing the contributions of source and target domain. When

λ1 is smaller than 1, the model learns more from the target do-

main. On the contrary, when λ1 is larger than 1, the target domain

counts more. Since the number of samples in the source domain is

always significantly larger than the number of samples in the tar-

get domain, the reasonable λ1 should be smaller than 1, otherwise

the target domain information may be ”wash out”. Therefore, a

reasonable value of λ1 should be λ1 ∈ [0.01, 1], which is consistent

with the experimental results shown in Fig. 5 (a). λ corresponds
2 
o the penalty term which guarantees small cross-domain distribu-

ion divergence. As shown in Fig. 5 (b), a suitable value should be

2 ∈ [0.01, 5]. As can be seen in Fig. 5 (c), the λ3 is the most sen-

itive parameter in the JDMC method. An inappropriate value of

3 will lead to non-convergence of the algorithm. The reasonable

hoice can be λ3 ∈ [10, 30]. The λ4 controls the distortions of the

ransformation. When λ4 → ∞ , the output transformation matri-

es P s and P t will converge to identity matrix, which corresponds

o the non-output-adaptation situation. When the λ4 is too small,

he label space could be over distorted. Hence, a reasonable value

hould be λ4 ∈ [10, 10 0 0]. Besides, in order to reflect the effects

f the pre-alignment step, we also give the performance without

ORAL alignment (dashed line) as contrast. As can be seen, the

ORAL pre-alignment can also improve the transfer performance

vidently. 

.5. Convergency evaluation 

The convergency of the JDMC method has been proved theoreti-

ally in Section 4.5 , which demonstrates that the objective function

s joint convex with respect to β, P s and P t . Here, we empirically

valuate the convergency performance of the JDMC. In particular,

he classification accuracy as well as the variation ‖ βt+1 − βt ‖ 2 F are

oncerned as the number of iterations increases. As can be seen in

ig. 6 , results over two domain shifts are shown, which indicates

hat both the classification accuracy and the variation ‖ βt+1 − βt ‖ 2 F 
onverges in a limited number of iterations. 
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Fig. 5. Parameter Sensitivity. The sensitivity of the regularization parameters λ1 , λ2 , λ3 , λ4 are evaluated on EN → SP and amazon → webcam domain shifts. The dashed line 

represents the performance of the JDMC without CORAL Alignment in the feature space, which reflects the influences of the pre-alignment step. Note that the standard 

deviations illustrated in the figure have been amplified for the same scale, since the original value is too small to be seen in the figure. 

Fig. 6. Convergency evaluation. We empirically evaluate the convergency property of JDMC on EN → SP and amazon → webcam domain shifts. 
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non-transfer ELM and other state-of-art methods. 
. Conclusion 

In this paper, we presented a novel approach for joint do-

ain adaptation under the ELM framework, which explicitly learns

he cross-domain classifier and output adaptation transformations

ointly. To reduce the cross-domain distribution discrepancy, we

ligned the source and target domain with the correlation align-

ent, and then minimized the marginal and conditional distribu-
ion discrepancy measured by MMD criterion. Besides, in order to

elect informative features for knowledge transfer, the � 2,1 -norm

as imposed on the output weights for structured sparsity. What

s more, an effective alternative optimization method was intro-

uced to jointly learn the projection matrix and the model pa-

ameters. Extensive experiments on several challenging datasets

howed the effectiveness of the proposed JDMC compared with the
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