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Dynamic Frame Interpolation in Wavelet Domain
Lingtong Kong, Boyuan Jiang, Donghao Luo, Wenqing Chu, Ying Tai, Chengjie Wang, Jie Yang

Abstract—Video frame interpolation is an important low-level
vision task, which can increase frame rate for more fluent
visual experience. Existing methods have achieved great success
by employing advanced motion models and synthesis networks.
However, the spatial redundancy when synthesizing the target
frame has not been fully explored, that can result in lots of
inefficient computation. On the other hand, the computation
compression degree in frame interpolation is highly dependent
on both texture distribution and scene motion, which demands to
understand the spatial-temporal information of each input frame
pair for a better compression degree selection. In this work,
we propose a novel two-stage frame interpolation framework
termed WaveletVFI to address above problems. It first estimates
intermediate optical flow with a lightweight motion perception
network, and then a wavelet synthesis network uses flow aligned
context features to predict multi-scale wavelet coefficients with
sparse convolution for efficient target frame reconstruction,
where the sparse valid masks that control computation in
each scale are determined by a crucial threshold ratio. Instead
of setting a fixed value like previous methods, we find that
embedding a classifier in the motion perception network to
learn a dynamic threshold for each sample can achieve more
computation reduction with almost no loss of accuracy. On
the common high resolution and animation frame interpolation
benchmarks, proposed WaveletVFI can reduce computation up
to 40% while maintaining similar accuracy, making it perform
more efficiently against other state-of-the-arts. Code is available
at https://github.com/ltkong218/WaveletVFI.

Index Terms—Video frame interpolation, wavelet transform,
dynamic neural networks, adaptive inference, high efficiency.

I. INTRODUCTION

V IDEO frame interpolation (VFI) is an important low-
level computer vision task aiming to generate non-

exist intermediate frames between actual successive inputs,
which can largely increase the video temporal resolution. It
plays an important role in broad application prospects, such
as slow motion generation [1], video editing [2], animation
production [3] and frame rate up-conversion [4], [5].

The successful flow-based frame interpolation algo-
rithms [1], [6]–[8] can mostly be abstracted as two-stage
encoder-decoder architectures, that first model optical flow
between target frame and input frames, and then generate
the target frame by a synthesis network. To improve the first
stage, current state-of-the-arts try to adopt higher order motion
model [9]–[11], additional refinement unit [9], [12] or directly
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estimate intermediate flow by a learnable network [13]–[15].
As for the second stage, more powerful synthesis networks are
employed to improve the frame generation ability [6], [8], [16],
[17]. Although significant progresses have been made by above
flow-based approaches, their static deep architectures can lead
to large computation redundancy on the typical piecewise flat
regions in high resolution and animation videos, restricting
their application scenarios to a great extent.

In this paper, inspired by the sparse representation in
wavelet decomposition, we propose a novel two-stage flow-
based frame interpolation algorithm called WaveletVFI for
higher computation efficiency. Different from previous meth-
ods that directly synthesize the target frame in RGB color
space [7], [8], [12], [17], we employ discrete wavelet trans-
form (DWT) to decompose the target frame into multi-scale
frequency domain and propose a wavelet synthesis network
(WS-Net) to predict the decomposed wavelet coefficients
which are inherently sparse in high resolution or cartoon
images. For wavelet coefficients, the low-frequency component
represents the overall scene structure and the sparse high-
frequency component describes some edge information. Dur-
ing the progressive inverse discrete wavelet transform (IDWT)
based image reconstruction procedure, only the sparse high-
frequency components need to be estimated in this scale.
Therefore, as shown in Fig. 1, we can employ efficient sparse
convolution decoder in WS-Net to predict multi-scale high-
frequency wavelet coefficients only in certain areas, while still
enabling high-quality intermediate frame synthesizing.

In order to build the valid spatial mask for sparse con-
volution, a threshold ratio has to be determined, like the
quantization step in image compression [18], [19]. Admittedly,
the threshold hyper-parameter is an important factor that
affects the computation cost and the VFI accuracy. As depicted
in Fig. 1, for the same WS-Net, a lower threshold ratio η
will keep more high-frequency coefficients to be estimated,
resulting in larger computation and usually higher accuracy. In
contrast, more high-frequency coefficients are ignored and set
to zero, often yielding lower performance while the required
computation are also smaller. Thus, how to set a reasonable
threshold is worth studying, that has been widely discussed in
traditional image compression and denoising tasks [20], [21].
However, in VFI task, the scene content to be generated comes
from dynamic inputs, making the compression threshold for
synthesizing the intermediate frame highly dependent on both
texture distribution and motion situation of each input frame
pair, which are difficult to be modeled explicitly. For example,
given input frames with clear texture and from certain inter-
frame motion, more high-frequency coefficients should be kept
for better accuracy. On the other hand, when feeding input
frames with blurry texture or from uncertain motion, more
high-frequency coefficients can be ignored to save computation
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Fig. 1. Target frame generation in the highest resolution decoder D1
WS of WS-Net. The valid mask M1 obtained from lower level decoder D2

WS determines
the spatial location to calculate three high-frequency wavelet coefficients LH1,HL1,HH1 with sparse convolution in decoder D1

WS. Each row represents for
synthesizing the target intermediate frame LL0 with different compression threshold ratio η, where smaller η will take more computation cost and usually
achieve better accuracy. LL0 is generated by IDWT operation applied on coefficient maps of LL1,LH1,HL1 and HH1.

but without perceptible accuracy loss.
To deal with this problem, we propose a novel dynamic

threshold ratio selection approach which can adjust the com-
putation cost compression degree of each input sample adap-
tively for more efficient inference. Specifically, we introduce
a threshold classifier which is embedded in the bottom part
of the first stage motion perception network (MP-Net) and
can learn the spatial-temporal information existed in input
frames. In practice, we set several different threshold ratios
as candidates and use output probability distribution over
candidates of the threshold classifier as selection guidance.
The MP-Net together with the threshold classifier are care-
fully designed with lightweight model size and computation
complexity, and are jointly optimized with WS-Net for VFI
task in an end-to-end manner. By exploiting the proposed
dynamic compression threshold selection approach, we can
better excavate computation redundancy when synthesizing the
compressible target frame.

In summary, to our best knowledge, we are the first to
explore the spatial redundancy problem in frame interpolation,
and further build a deep VFI architecture in wavelet domain
for efficient inference. Moreover, we propose a novel dynamic
threshold selection mechanism to better allocate computa-
tion for each input sample. Experiments on the traditional
Vimeo90K [13], the animation ATD12K [3] and the high
resolution Xiph-2K [22] and Xiph-4K [22] frame interpola-
tion benchmarks demonstrate the effectiveness of proposed
approaches, which can adaptively reduce the overall resource
consumption while maintaining advanced VFI accuracy.

II. RELATED WORK

A. Video Frame Interpolation

Research in deep learning based frame interpolation can
be roughly categorized into flow-based and kernel-based
approaches. Kernel-based methods adopt adaptive convolu-
tion [23], where they unify motion estimation and frame
generation into a single convolution step with spatial varying

convolution kernels. Following works mainly enhance the
freedom of convolution operation [24]–[26], combining optical
flow offsets for better spatial alignment [27], or introducing
channel attention mechanism [28]. Kernel-based approaches
can naturally generate complex contextual details, however,
their prediction tend to be blurry when scene motion is large.

Recent state-of-the-arts mostly adopt flow-based meth-
ods [1], [3], [7]–[9], [12], [17], [29]–[31], since optical flow
can provide an explicit correspondence for frame registra-
tion, especially in large motion scenes. Due to there is an
independent motion modeling step in flow-based approaches,
they usually contain a second target frame synthesizing stage.
Existing improvement for the first stage try to adopt more
advanced motion model [9]–[11], [30], additional refinement
unit [9], [12] or directly estimate intermediate flow by an
encoder-decoder network [13]–[15]. As for the second stage,
more powerful synthesis networks are employed to improve
the frame generation ability [6], [8], [16], [17].

In order to achieve more efficiency, CDFI [32] first leverages
model pruning through sparsity-inducing optimization, and
then add additional synthesis module to improve previous
compressed network, which significantly reduces model size
against the baseline AdaCoF [25]. However, their complex
architecture leads to large time delay and the results are
inferior to current SOTA methods. Like our approach, CAIN-
SD [33] also adopts a motion-aware dynamic architecture for
efficiency, where they dynamically adjust the network depth
and input resolution for each input image patch. However, their
stitched target frame contains artifacts at patch edges, and their
base model CAIN [28] can not deal with large motion as well
as flow-based VFI methods. Recently, IFRNet [29] achieves
state-of-the-art speed accuracy trade-off by jointly refining
intermediate optical flow together with a powerful intermediate
feature within a single encoder-decoder architecture. However,
the fully convolutional structure treats each pixel for synthe-
sizing equally, that can result in large computation redundancy
when generating lots of smooth regions.
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Fig. 2. Overall framework of our WaveletVFI that can interpolate frames dynamically in wavelet domain. It contains a motion perception network (MP-Net)
and a wavelet synthesis network (WS-Net), where the first model estimates intermediate optical flow and occlusion merge mask and the second network
encodes diverse spatial aligned inputs and predicts multi-scale sparse wavelet coefficient maps for progressive IDWT based target frame reconstruction. The
compression threshold classifier is a lightweight neural network which is embedded into the MP-Net to perceive spatial-temporal input and select adaptive
compression threshold ratio for adjusting computation cost. By leveraging the Gumbel softmax trick [43], [44], proposed WaveletVFI can be trained end-to-end.

B. Wavelets in Computer Vision

Wavelet decomposition and reconstruction is widely used
in signal processing, image processing and computer vision.
The discrete wavelet transform (DWT) can make the signal
energy distribution more concentrated on principle frequency
components and hence compress redundant information. The
JPEG2000 [34], [35] standard employs DWT algorithm in the
image compression stage, and a truncated threshold plays a
key role for quantization [20], [21]. The frequency filtering
characteristic of wavelet transform is also applied on tradi-
tional image denoising task [21], [36].

Recently, wavelet transform has been combined with diverse
deep learning based computer vision tasks. WDNet [37] pro-
poses to remove image moiré artifacts in the wavelet domain,
which is difficult to distinguish from true texture in the
RGB color space. Some super-resolution methods [38]–[40]
learn to estimate multiple high-frequency wavelet coefficients
from a low-resolution input image to generate high-resolution
image by inverse discrete wavelet transform (IDWT). Wavelet-
Stereo [41] learns stereo matching by predicting the wavelet
coefficients of the disparity, that can better deal with global
context with textureless surfaces. Closer to our work, Wavelet-
Monodepth [42] predicts multi-scale sparse wavelet coeffi-
cients for efficient monocular depth estimation. However, their
compression threshold value can not dynamically adjust on ev-
ery sample for better accuracy efficiency trade-off. Moreover,
the threshold selection in dynamic VFI task is more complex
than the static monocular depth task, since motion uncertainty
will influence the compression characteristic curve. To our best
knowledge, we are the first to apply wavelet transform to frame
interpolation, and further in a dynamic manner.

C. Dynamic Neural Networks

Dynamic neural networks, as opposed to traditional static
models, can adapt their structures or parameters according to

the input during inference, and therefore enjoy favorable prop-
erties that are absent in static ones. One of the most notable
advantages of dynamic models is that they are able to allocate
computations on demand in test time. Common practices
mostly include dynamic depth, dynamic width and spatial-wise
dynamic networks. The dynamic depth approaches contain two
major types of early exiting [45], [46] and layer skipping [47],
[48]. The dynamic width networks usually skip neurons in
fully-connected (FC) layers [49], [50] or skip channels in con-
volutional neural networks (CNNs) [51], [52]. The spatial-wise
dynamic networks often leverage dynamic sparse convolution
to reduce the unnecessary computation on less informative
locations, where our WaveletVFI falls into this category. To
determine the spatial location for sparse convolution, diverse
sampling strategies are invented. A typical approach is to use
an extra network branch to generate a spatial valid mask where
many methods [53]–[55] belong to this paradigm. Another
kind algorithms make use of the sparse characteristics of
the input [56]. Different from these methods, our approach
leverages the intrinsic sparsity of wavelet representation and
explore the optimal sparsity degree by learning from the
spatial-temporal motion information in an end-to-end manner,
that is especially suitable for frame interpolation task.

III. METHOD

In this section, we first introduce the overall framework
of the proposed method. Then, we describe the bidirectional
intermediate flow estimation and dynamic compression thresh-
old selection approach in motion perception network. Further,
complementary context encoder, sparse convolution decoder
and progressive IDWT based target frame reconstruction algo-
rithm in wavelet synthesis network are demonstrated. Finally,
we present the optimization procedure and loss functions.
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Fig. 3. Structure details of the pyramid encoder EMP and coarse-to-fine decoders D4
MP,D

3
MP,D

2
MP,D

1
MP in proposed motion perception network NMP.

The compression threshold ratio classifier is a branch of D4
MP. Arguments of ‘Conv’ from left to right are input channels, output channels, kernel size, stride

and padding, respectively. Dimensions of input and output tensors from left to right stand for feature channels, height and width, separately. A Leaky ReLU
activation with negative slope set to 0.1 follows each learnable layer except for the last one. We take input frames with resolution 640 × 480 as example.

A. Framework Overview

Inspired by the sparse representation characteristic of
wavelet decomposition and threshold selection methods on
image compression [20], [21], [34], we propose an instance-
aware dynamic compression threshold selection approach in
wavelet domain for efficient video frame interpolation. As
shown in Fig. 2, our proposed method follows the success-
ful two-stage flow-based VFI pipeline. In the first stage,
the MP-Net jointly estimates bidirectional intermediate flow
Ft→0, Ft→1 and an occlusion fusion mask Ot from coarse
to fine. Then, the intermediate flow, occlusion mask, input
images I0, I1 and merged intermediate frame I

′

t are fed into
the encoder part of WS-Net in the second stage. Meanwhile,
the threshold classifier in MP-Net learns the spatial-temporal
input information and provides candidates probability for
compression threshold selection, which controls the compu-
tation cost and synthesis accuracy of the sparse convolution
decoder part of WS-Net. In training, candidates probability
is applied with Gumbel softmax trick [43], [44] for gradient
back propagation, while in inference, only threshold ratio with
maximum probability is selected for synthesizing.

B. Motion Perception Network

1) Joint Intermediate Flow and Occlusion Estimation:
The MP-Net takes two input frames I0, I1 and jointly es-
timates bidirectional intermediate optical flow Ft→0, Ft→1

with occlusion fusion mask Ot in a coarse-to-fine manner.
Specifically, the pyramid encoder of MP-Net extracts 4 levels
of pyramid features, i.e., ϕ10, ϕ

2
0, ϕ

3
0, ϕ

4
0 and ϕ11, ϕ

2
1, ϕ

3
1, ϕ

4
1

from I0 and I1 respectively, where the spatial resolution of
level l + 1 is 1/2 of level l. The bottom level decoder
D4

MP directly takes the concatenation of ϕ40, ϕ
4
1 as input, and

estimates a coarse intermediate flow F 4
t→0, F

4
t→1 and fusion

mask O4
t . Following the success of pyramid methods [57]–

[59] in large displacement optical flow estimation, we adopt

the 2 × upsampled intermediate flow up2(F
4
t→0), up2(F

4
t→1)

to backward warp pyramid features ϕ30, ϕ
3
1 and obtained the

warped features ϕ̃30, ϕ̃
3
1 respectively. Then, the concatenated

features of up2(F
4
t→0), up2(F

4
t→1), up2(O

4
t ) and ϕ̃30, ϕ̃

3
1 are

fed to decoder D3
MP for estimating finer intermediate flow

F 3
t→0, F

3
t→1 and occlusion mask O3

t . This procedure is per-
formed recursively until reaching the original input resolution
and yielding Ft→0, Ft→1, Ot. In experiments, we find that in-
tegrate occlusion mask Ot with intermediate flow Ft→0, Ft→1

for joint refinement can provide more useful information for
the following synthesis network with negligible additional
cost. Concretely, we can build a merged intermediate frame
I

′

t to better guide the following WS-Net by

I
′

t = Ot ⊙ Ĩ0 + (1−Ot)⊙ Ĩ1, (1)

Ĩ0 = warp(I0, Ft→0), Ĩ1 = warp(I1, Ft→1), (2)

where warp means backward warping, ⊙ stands for element-
wise multiplication, and − is element-wise subtraction. Fig. 3
shows structure details of the motion perception networkNMP.

2) Compression Threshold Classifier: The role of our pro-
posed compression threshold ratio classifier, abbreviated as
threshold classifier, is to decide the threshold ratio hyper-
parameter η for the following WS-Net, which controls the
trade-off between computation complexity and target frame
synthesis accuracy. However, different from the image com-
pression [20], [35] and monocular depth estimation [42] tasks
in wavelet domain, where the compression threshold is mainly
affected by static scene content, in frame interpolation, the
compression degree of target frame is influenced by both scene
structure and motion situation, which are more complex to
model. For example, target frames synthesized from input
samples with blur, exposure and other noisy texture in the
challenging motion scenes usually contain more unreliable
high-frequency texture, which are more compressible and can
even achieve better results by the denoising characteristics of
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Fig. 4. Structure details of the complementary context encoders EWS1, EWS2 and coarse-to-fine decoders D4
WS,D

3
WS,D

2
WS,D

1
MP in proposed wavelet

synthesis network NWS. ‘SConv’ means sparse convolution. Arguments of ‘Conv’ and ‘SConv’ from left to right are input channels, output channels, kernel
size, stride and padding, respectively. Dimensions of input and output tensors from left to right stand for feature channels, height and width, separately. A
Leaky ReLU activation with negative slope set to 0.1 follows each learnable layer except for the last one. We take input resolution 640 × 480 as example.

wavelet transform [21], [60]. On the other hand, target frame
with rich texture and from certain motion should keep more
high-frequency wavelet coefficients for better quantitative and
qualitative results. To deal with above intractable problem,
we introduce the threshold classifier in MP-Net to find an
appropriate instance-aware threshold ratio by inferring a prob-
ability distribution over candidate threshold ratios. In practice,
as shown in Fig. 3, the threshold classifier is a lightweight
network with one convolution and two fully-connected layers
separated by Leaky ReLU activation, that is embedded to
the second last convolution layer of decoder D4

MP in MP-
Net. Taking m threshold ratios of η1, η2, ..., ηm as candi-
dates, the threshold classifier predicts a categorical distribution
π = [π1, π2, ..., πm] over them. Since there exists an non-
differentiable problem in the process from the soft probability
outputs π to the hard one-hot selection h ∈ {0, 1}m, we lever-
age the Gumbel softmax trick [43], [44] to make the discrete
decision differentiable during the gradient back propagation,
which means the discrete candidate threshold selections can
be drawn by using

h = one hot[argmax
k

(log(πk) + gk)], (3)

where gk ∼ Gumbel(0, 1) is an i.i.d Gumbel noise sample,
which will not influence the highest entry of the original cate-
gorical probability distribution. During training, the derivative
of above one-hot operation can be approximated by Gumbel
softmax function that is both continuous and differentiable

hk =
exp[(log(πk) + gk)/τ ]∑m
j=1 exp[(log(πj) + gj)/τ ]

, (4)

where τ is a temperature parameter. When τ → ∞, samples
from Gumbel softmax distribution become uniform. In con-
trast, when τ → 0, samples from Gumbel softmax distribution
become one-hot. In our experiments, we start at a high
temperature of τ = 1.0 and anneal it to 0.4 finally.
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Fig. 5. Progressive DWT with Haar kernels for image decomposition.
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Fig. 6. Progressive IDWT with Haar kernels for image reconstruction.

C. Wavelet Synthesis Network

1) Complementary Context Encoder: Like MP-Net, the
WS-Net is also a U-shape encoder-decoder network, however,
it has more feature channels but with less cascaded convolu-
tions in each scale. The reason is that flow warped context
features have almost been aligned to the target position, while
more feature channels are needed for encoding diverse image
texture. Different from previous methods [6], [8], [15] that
adopt only a single encoder, we employ two different en-
coders EWS1, EWS2 to extract complementary context features.
Specifically, EWS1 extracts 4 levels of pyramid features of
φ1
0, φ

2
0, φ

3
0, φ

4
0 and φ1

1, φ
2
1, φ

3
1, φ

4
1 from I0 and I1 separately.

Then, they are warped by progressively down sampled inter-
mediate flow fields Ft→0, Ft→1 to obtain target frame aligned
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context features of φ̃l
0, φ̃

l
1, l ∈ {1, 2, 3, 4} respectively. On the

other hand, EWS2 takes concatenation of Ft→0, Ft→1, Ot and
I

′

t as input, and also extracts 4 levels of pyramid features
of ψl, l ∈ {1, 2, 3, 4}, that contain additional scene motion
and occlusion information. Finally, we take the concatenated
features of φ̃l

0, φ̃
l
1 and ψl as the complementary context feature

in each level l. Details of EWS1, EWS2 are depicted in Fig. 4.
2) Haar Wavelet Transform: Before introducing sparse

convolution decoder, we first explain the Haar wavelets used
in our WaveletVFI, which has the simplest basis functions in
discrete wavelet transform (DWT). Haar wavelet transform has
four kernels, i.e., {LL⊤,LH⊤,HL⊤,HH⊤}, where the low (L)
and high (H) pass filters are

L⊤ =
1√
2
[1 1], H⊤ =

1√
2
[−1 1]. (5)

DWT with Haar wavelets can decompose a 2D image into four
coefficient maps, including a low-frequency component LL
and three high-frequency components LH,HL,HH at half the
resolution of input image, where LL captures smooth texture
while LH,HL,HH extract vertical, horizontal and diagonal
‘jump’ information. Since DWT is an invertible operation, we
can adopt its inverse, i.e. IDWT, to convert four coefficient
maps back to the 2D image at double the resolution of
coefficient maps. To extract multi-scale and multi-frequency
wavelet representation from ground truth intermediate frame
Ît, we can apply DWT operation recursively on the low-
frequency coefficient map L̂L, starting from the input image
Ît, as shown in Fig. 5. Correspondingly, to reconstruct the
predicted target frame It, decoders in WS-Net Dl

WS, except the
bottom one D4

WS, only need to estimate three high-frequency
wavelet coefficients in this scale, and apply IDWT operation
on them recursively until reaching the original input resolution,
that is shown in Fig. 6. Formally, these two mutually inverse
transforms can be written as

L̂L
l
, L̂H

l
, ĤL

l
, ĤH

l
← DWT(L̂L

l−1
), (6)

LLl−1 ← IDWT(LLl,LHl,HLl,HHl), (7)

where superscript l, l ∈ {1, 2, 3, 4} denotes the current pyra-
mid level,ˆmeans the ground truth wavelet coefficients, L̂L

0

and LL0 equals to ground truth frame Ît and predicted target
frame It respectively.

3) Sparse Convolution Decoder: For the piecewise flat
regions in high resolution and cartoon images, most of their
high-frequency wavelet coefficients have small values that
are close to zero, while only some noticeable values are
around image edges. Therefore, for full-resolution target frame
reconstruction, only certain pixel locations need to estimate
non-zero wavelet coefficients at each scale. Denoting these
certain locations as sparse valid mask M l ∈ {0, 1}Hl×W l

in
level l, where 1 means valid, we can exploit sparse convolution
to build decoder Dl

WS for efficient calculation as

LHl,HLl,HHl = Dl
WS(χ

l,M l), l ∈ {1, 2, 3}, (8)

where χl stands for the concatenated encoding and decoding
pyramid features in level l of the U-shape WS-Net. M l denotes
the sparse valid mask of the last sparse convolution in decoder

Algorithm 1: Progressive Target Frame Reconstruction
Input: Pyramid features: [χ4, χ3, χ2, χ1]; Compression

threshold ratio: η.
Output: Predicted intermediate frame: LL0; Predicted

multi-scale wavelet coefficients set:
W = {LLl,LHl,HLl,HHl|l = 1, 2, 3, 4}.

LL4,LH4,HL4,HH4 = D4
WS(χ

4);
LL3 ← IDWT(LL4,LH4,HL4,HH4);
for ( l = 3; l > 0; l = l − 1 ) {

ηl = η · (max(LLl)−min(LLl));
M l = up2(max(|LHl+1|, |HLl+1|, |HHl+1|) > ηl);
LHl,HLl,HHl = Dl

WS(χ
l,M l);

LLl−1 ← IDWT(LLl,LHl,HLl,HHl);
}

Dl
WS. To get meaningful value during sparse inference, we use

the 3×3 morphological dilate operation dilate3 to obtain
the sparse valid mask of the first sparse convolution in each
decoder Dl

WS. Given predicted multi-scale sparse wavelet
coefficients, we can get the predicted intermediate frame It,
i.e., LL0 by exploiting inverse discrete wavelet transform
(IDWT) progressively. It is worth noting that elements in the
initial valid mask M4 are all set to 1, and D4

WS predicts an
additional low-frequency coefficient LL4.

4) Sparse Valid Mask Calculation: Finally, we demonstrate
how to calculate sparse valid mask M l in level l, l ∈ {1, 2, 3},
where the compression threshold ratio η plays a key role as
previously discussed. Inspired by the spatial correlation of dif-
ferent wavelet coefficient maps among multiple scales, which
is first raised in the zerotree wavelets encoding algorithm [61],
we assume that M l can be determined with high-frequency
coefficient maps estimated at the previous scale by

M l = up2(max(|LHl+1|, |HLl+1|, |HHl+1|) >
η · (max(LLl)−min(LLl))). (9)

Since the target frame It is a 3-channel RGB image, we first
calculate valid mask M l

c for each color channel, then we take
the union set of M l

c, c ∈ {R,G,B} as the final M l. As shown
in Eq. 9, a larger η will make M l more sparse, which usually
leads to less computation and lower synthesis accuracy.

In summary, the target frame synthesis procedure in pro-
posed WS-Net involves sparse valid mask calculation, sparse
convolution inference and progressive IDWT based image
reconstruction, we arrange these approaches into an algorithm
for clarity which is presented in Algorithm 1.

D. Optimization

1) Differentiable Forward Propagation: Based on above
analysis, the forward propagation stage of WaveletVFI can
be summarized as following steps: 1) Given two input frames
I0, I1, NMP predicts Ft→0, Ft→1, Ot and a discrete candidate
threshold selection h by Gumbel softmax trick in Eq. 4.
2) Given I0, I1, Ft→0, Ft→1, Ot, I

′

t and a specific candidate
selection hk, k ∈ {1, 2, ...,m}, NWS estimates the multi-
scale wavelet coefficients set Wk, which is abbreviated as
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Ground Truth Frame from ATD12K [3]

Overlay SepConv [24] DAIN [7] CAIN [28] AdaCoF [25]

SoftSplat [8] CDFI [32] EDSC [62] ABME [17] WaveletVFI

Ground Truth Frame from ATD12K [3]

Overlay SepConv [24] DAIN [7] CAIN [28] AdaCoF [25]

SoftSplat [8] CDFI [32] EDSC [62] ABME [17] WaveletVFI

Fig. 7. Qualitative comparison of our WaveletVFI with other state-of-the-art frame interpolation methods on ATD12K [3] dataset. Zoom in for best view.

Wk = NWS(· · · ;hk). 3) Denoting above progressive IDWT
based target frame reconstruction algorithm as AIDWT, the
predicted intermediate frame LL0

k based on the k-th candidate
selection hk can be obtained by LL0

k = AIDWT(Wk). 4)
Given the predicted candidate selection h, we can get the final
predicted target frame LL0 and multi-scale wavelet coefficients
set W by summing up hk with h as follows

LL0 =
∑m

k=1
hk · AIDWT(NWS(· · · ;hk)), (10)

W =
∑m

k=1
hk · NWS(· · · ;hk). (11)

2) Loss Functions: For generating the target frame, we
employ the same image reconstruction loss Lr as IFRNet [29]
between the prediction LL0 and ground truth L̂L

0
, which is

the sum of two terms as

Lr = ρ(LL0 − L̂L
0
) + Lcen(LL

0, L̂L
0
), (12)

where ρ(x) = (x2 + ϵ2)α with α = 0.5, ϵ = 10−3 is the
robust Charbonnier loss [63]. Lcen is the census loss, which
calculates soft Hamming distance between census-transformed
image patches [64], [65]. Moreover, we adopt a new frequency
domain reconstruction loss for better structure awareness as

Lf =
∑

j
ρ(wj − ŵj), (13)

where wj and ŵj are corresponding wavelet coefficient maps
from the prediction set W and the ground truth set Ŵ,
respectively. Finally, in order to reduce computation budget
and balance different compression threshold ratio selection,
we propose a computation cost regularization term as

Lc =
∑m

k=1
hk · C(NWS(· · · ;hk)) / (H ×W ), (14)

where C is the FLOPs counter, H and W represent the height
and width of original input resolution. Our final objective
function combines above three components with weighting
parameters of α and β, where β controls the trade-off between
accuracy and efficiency, that is formulated as

L = Lr + αLf + βLc. (15)

IV. EXPERIMENTS

In this section, we first introduce the datasets used for
training and test, and implementation details about the learning
strategy. Then, we compare the proposed framework with
recent state-of-the-art VFI methods on the commonly used low
resolution, high resolution and animation frame interpolation
benchmarks quantitatively and qualitatively. Finally, we carry
out ablation study for analysis, and do more discussion.

A. Datasets

In this work, we supervise the proposed WaveletVFI on
the training split of Vimeo90K [13], and test it on multiple
datasets summarized as follows: 1) Vimeo90K [13] is a
widely-used dataset for video processing tasks. There are
3,782 triplets with 448 × 256 resolution in the test set. 2)
ATD12K [3] is an animation frame interpolation benchmark,
where there are 2,000 triplets from diverse cartoon scenarios
in test datasets. Note that we adopt the 960 × 540 resolution
part to cover diverse video resolutions for more sufficient
evaluation, which is different from the 1080p test part reported
in the original paper. 3) Xiph [22] contains 30 raw video
sequences that is originally used for testing video codecs. For
frame interpolation, we follow the data processing operations
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TABLE I
QUANTITATIVE COMPARISON WITH RECENT STATE-OF-THE-ART FRAME INTERPOLATION METHODS ON VIMEO90K, ATD12K, XIPH-2K AND XIPH-4K

BENCHMARKS. COMPUTATION COMPLEXITY IS MEASURED IN TERA-FLOPS (TFLOPS). FOR EACH ITEM,
THE BEST RESULT IS BOLDFACED, AND THE SECOND BEST IS UNDERLINED.

Method
Params Vimeo90K ATD12K Xiph-2K Xiph-4K

(M) TFLOPs PSNR SSIM TFLOPs PSNR SSIM TFLOPs PSNR SSIM TFLOPs PSNR SSIM

SepConv [24] 21.7 0.108 33.79 0.970 0.487 27.40 0.950 2.078 34.77 0.929 2.078 32.06 0.880
DAIN [7] 24.0 0.686 34.71 0.976 3.099 27.38 0.955 13.22 35.97 0.940 13.22 33.51 0.898
CAIN [28] 42.8 0.162 34.65 0.973 0.734 25.28 0.952 3.133 35.21 0.937 3.133 32.56 0.901
AdaCoF+ [25] 22.9 0.282 34.56 0.959 1.273 27.39 0.937 5.433 35.09 0.931 5.433 32.19 0.882
SoftSplat [8] 12.2 0.112 36.10 0.970 0.506 28.22 0.957 2.160 36.62 0.944 2.160 33.60 0.901
BMBC [16] 11.0 0.311 35.06 0.964 1.405 27.68 0.945 5.994 32.82 0.928 5.994 31.19 0.880
CDFI [32] 5.0 0.102 35.17 0.964 0.463 28.15 0.950 1.977 35.50 0.960 1.977 32.50 0.932
ABME [17] 18.1 0.161 36.18 0.981 0.728 28.71 0.959 3.108 35.18 0.964 3.108 32.36 0.940
CAIN-SD [33] > 42 - - - - - - 1.598 34.68 0.924 1.983 32.92 0.893
IFRNet-L [29] 19.7 0.098 36.20 0.981 0.444 28.78 0.956 1.896 36.63 0.966 1.896 33.58 0.944

WaveletVFI (Ours) 19.4 0.081 35.58 0.978 0.274 28.79 0.956 1.480 36.32 0.965 1.428 33.61 0.945

TABLE II
COMPARISON OF RUNNING TIME AND MEMORY USAGE ON XIPH-4K.

TIME AND MEMORY ARE MEASURED ON ONE TESLA V100
GPU UNDER PYTORCH IMPLEMENTATION.

Method DAIN CAIN AdaCoF+ SoftSplat
Time (s) 2.39 0.17 0.32 0.41

Memory (GB) 15.9 4.7 12.1 8.8

Method BMBC CDFI ABME WaveletVFI
Time (s) 9.10 0.92 1.63 0.19

Memory (GB) 27.2 27.9 17.2 7.0

in SoftSplat [8] to generate Xiph-2K test set by down sampling
4K videos and generate Xiph-4K test set by center cropping
2K patches. There are 392 frame triplets of resolution 2048
× 1080 in both Xiph-2K and Xiph-4K benchmarks.

B. Implementation Details

We implement the proposed WaveletVFI in PyTorch and
adopt a two step learning schedule to train our algorithm on
Vimeo90K training set from scratch. First, we train the NMP

and NWS but without the threshold classifier for 300 epochs as
initialization, where the compression threshold ratio η is set to
0, weighting parameters α and β in Eq. 15 are set to 0.01 and 0
respectively. Then, we load the pre-trained parameters in step 1
and fine-tune the whole WaveletVFI framework with proposed
dynamic threshold ratio selection approach for another 100
epochs to learn instance-aware threshold ratio selection, that
considers the trade-off between accuracy and efficiency. In
this stage, we set α and β to be 0.01 and 1 separately. All
parameters that need to update are optimized by AdamW [66]
algorithm, and the model is trained with total batch size 24 on
four NVIDIA Tesla V100 GPUs. In both steps, the learning
rate is initially set to 1 × 10−4, and gradually decays to
1 × 10−5 following a cosine attenuation schedule. During
training, we augment the triplet samples by random horizontal
and vertical flipping, rotating, reversing sequence order and
random cropping patches with size 256 × 256. Following the

common practice of t = 0.5, all compared approaches only
interpolate one middle frame in the experiments.

C. Comparison with the State-of-the-Arts

We compare proposed WaveletVFI with state-of-the-art VFI
methods, including kernel-based SepConv [24], CAIN [28],
AdaCoF [25], CDFI [32] and CAIN-SD [33], flow-based
DAIN [7], SoftSplat [8], BMBC [16], ABME [17] and IFR-
Net [29]. Common metrics, such as Peak Signal-to-Noise Ra-
tio (PSNR) and Structural Similarity (SSIM) [67] are adopted
for quantitative evaluation. For the computation complexity,
we calculate the number of floating-point operations (FLOPs)
and average per sample FLOPs over specific dataset.

1) Quantitative Comparison: As shown in Table I, pro-
posed approach always requires the smallest FLOPs than
others, while achieving better or comparable accuracy. On the
ATD12K [3] 540p animation benchmark, our method takes
only 59% computation cost of the efficient CDFI [32], while
obtaining 0.64 dB performance improvement. The method
IFRNet [29] and ABME [17] also achieve similar accuracy
as ours, however, proposed WaveletVFI only uses 62% or
38% multiply-add operations respectively with comparable
model size. As for the high resolution Xiph [22] datasets,
our approach performs best in both PSNR and SSIM on
the more challenging Xiph-4K benchmark, while only falls
behind IFRNet [29] and SoftSplat [8] on the Xiph-2K test set.
Similar as ours, SoftSplat is also a two-stage flow-based frame
interpolation method. However, thanks to the efficiency of pro-
posed dynamic compression threshold selection approach in
wavelet domain, we can achieve better or on par accuracy than
SoftSplat, while requiring only 67% computation on the high
resolution Xiph benchmarks. Compared with CAIN-SD [33],
that is also a dynamic VFI method for reducing computation
complexity, we achieve smaller FLOPs while obtaining signif-
icant accuracy gain, i.e., 1.64 dB better on Xiph-2K and 0.69
dB better on Xiph-4K. In regard to real deployment, as shown
in Table II, we test inference time and peak GPU memory
usage of several well-behaved VFI methods on one Tesla V100
GPU under PyTorch on Xiph-4K. It can be seen that proposed
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Ground Truth Frame from Xiph-4K [22]

Overlay SepConv [24] DAIN [7] CAIN [28] AdaCoF [25]

SoftSplat [8] CDFI [32] EDSC [62] ABME [17] WaveletVFI

Ground Truth Frame from Xiph-4K [22]

Overlay SepConv [24] DAIN [7] CAIN [28] AdaCoF [25]

SoftSplat [8] CDFI [32] EDSC [62] ABME [17] WaveletVFI

Fig. 8. Qualitative comparison of our WaveletVFI with other state-of-the-art frame interpolation methods on Xiph-4K [22] dataset. Zoom in for best view.

TABLE III
ABLATION OF COMPLEMENTARY CONTEXT ENCODERS EWS1, EWS2 ,

FREQUENCY RECONSTRUCTION LOSS Lf AND WAVELET DOMAIN
INTERPOLATION W FOR NWS DURING THE FIRST TRAINING STEP.

ID EWS1 EWS2 Lf W
Vimeo90K

PSNR SSIM

E1 ✓ ✗ ✗ ✓ 34.58 0.965
E2 ✗ ✓ ✗ ✓ 35.33 0.972
E3 ✓ ✓ ✗ ✓ 35.56 0.976
E4 ✓ ✓ ✓ ✓ 35.60 0.979
E5 ✓ ✓ ✗ ✗ 35.56 0.974

approach only falls behind CAIN [28] but outperforms others.
Note that our sparse convolution is simulated by traditional
convolution multiplied with sparse mask which supports end-
to-end optimization in training. During inference, we follow
the approach in WaveletMonodepth [42], and can replace it by
more efficient operations.

In summary, considering 8 accuracy metrics, including
PSNR and SSIM on Vimeo90K, ATD12K, Xiph-2K and Xiph-
4K datasets, our approach ranks 1st 3 times, 2nd 1 times, and
3rd 3 times. Moreover, we always consume the least amount
of computation. Above quantitative results have demonstrated
the good comprehensive performance of our approaches.

2) Qualitative Comparison: To visually compare with other
SOTA methods, we show two examples from ATD12K and
Xiph-4K in Fig. 7 and Fig. 8, respectively. The first example
in Fig. 7 depicts a bus driving on the water, where proposed
approach can synthesize the reflection of this cartoon bus
realistically, while predictions from other methods behave
blurry and twisty. The second example in Fig. 7 shows the

character of No-Face in Spirited Away, where our method
can generate clearer white face and more reasonable teeth. In
Fig. 8, the first example shows a fast moving man waving his
arm, which is a challenging case in Xiph-4K. It is obvious that
proposed WaveletVFI can generate sharp motion boundary,
while results of other methods contain ghosting artifacts. As
for the second example in Fig. 8, interpolated frame of our
approach looks more faithful and distinct.

D. Ablation Study

In this part, we analyze proposed contributions in network
structure, loss function and hyper-parameters to explore the di-
verse characteristics of frame interpolation in wavelet domain
and verify the effectiveness of proposed approaches.

1) Complementary Encoder, Frequency Loss and Wavelet
Domain Interpolation: As shown in Table III, we carry out
ablation to verify the effectiveness of complementary context
encoders EWS1, EWS2, frequency reconstruction loss Lf and
wavelet domain frame interpolation W . We selectively remove
EWS1 or EWS2 and enlarge feature channels of the remaining
context encoder to be the same as original one for fair
comparison. As listed in the first three rows of Table III,
EWS2 behaves more important than EWS1. It is because that
EWS2 jointly models scene texture, motion and occlusion,
while EWS1 is more focused on original contextual details.
The combination of EWS1 and EWS2 achieves best results,
demonstrating they are mutually benefit. Moreover, as listed
of E4 in Table III, we can obtain better performance than
E3 by introducing an additional frequency reconstruction loss
Lf . In this setting, improvement of SSIM is more obvious,
verifying Lf can help generate better scene structure. The last
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TABLE IV
ABLATION STUDY OF DIFFERENT FIXED COMPRESSION THRESHOLD RATIO η FOR ACCURACY VS EFFICIENCY TRADE-OFF ON MULTIPLE DATASETS.

Dynamic η
Vimeo90K ATD12K Xiph-2K Xiph-4K

TFLOPs PSNR SSIM TFLOPs PSNR SSIM TFLOPs PSNR SSIM TFLOPs PSNR SSIM

✗ 0.0000 0.090 35.71 0.9791 0.409 28.83 0.9566 1.746 36.40 0.9664 1.746 33.62 0.9453
✗ 0.0025 0.087 35.70 0.9789 0.346 28.83 0.9565 1.660 36.39 0.9662 1.666 33.61 0.9452
✗ 0.0050 0.084 35.63 0.9780 0.314 28.82 0.9563 1.569 36.32 0.9646 1.558 33.58 0.9449
✗ 0.0075 0.081 35.49 0.9762 0.289 28.80 0.9558 1.491 36.16 0.9620 1.465 33.51 0.9441
✗ 0.0100 0.079 35.30 0.9738 0.270 28.78 0.9552 1.420 35.94 0.9587 1.385 33.43 0.9428
✗ 0.0125 0.077 35.05 0.9709 0.256 28.76 0.9546 1.356 35.68 0.9557 1.316 33.32 0.9413
✗ 0.0150 0.075 34.76 0.9675 0.245 28.73 0.9538 1.301 35.38 0.9528 1.256 33.19 0.9396
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Fig. 9. Analysis of accuracy vs efficiency by fixed compression threshold η.
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Fig. 10. Predicted target frame and sparse valid masks on diverse datasets.

experiment E5 uses the same synthesis network structure but
directly predicts target frame in color space. It concludes that
frame interpolation in wavelet domain behaves a little better
than in color space, verifying the rationality of progressive
IDWT based target frame reconstruction for VFI.

2) Accuracy vs Efficiency Trade-off by Wavelet Sparsity:
To demonstrate the superiority of sparse representation in
wavelet domain for efficient frame interpolation, we explore
the accuracy vs efficiency relationship by setting different fixed
compression threshold ratio η in the second training step, and

TABLE V
MOTION MAGNITUDE STATISTICS ON MULTIPLE DATASETS.

Dataset Vimeo90K ATD12K Xiph-2K Xiph-4K

Mean Value 6.06 19.4 10.9 25.3
Standard Deviation 6.12 32.3 12.5 33.3
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Fig. 11. Motion magnitude statistics on multiple datasets.

the corresponding η is also used during evaluation. We select 7
typical η values of 0.0000, 0.0025, 0.0050, . . . , 0.0150 to carry
out above experiments on diverse datasets, whose results are
summarized in Table IV. For better intuitive understanding, we
depict the relative change curves of score loss ratio against
computation reduction ratio in Fig. 9, where β is set to
0 in all these cases. In Fig. 9, each point stands for an
experiment result of one specific η value, and η gradually
increases from left to right in a specific line. As is expected,
larger η will result in less computation and lower performance,
however, the relative change rate of accuracy vs efficiency
shows big difference among different datasets. On Vimeo90K,
PSNR drops about 0.7% when computation is reduced by
10%. While on ATD12K, PSNR only drops about 0.4%
even computation is reduced by 40%. It concludes that for a
fixed η, relative computation reduction is more obvious when
there is more sparse low frequency texture in this dataset.
Fig. 10 visually supports this conclusion by showing predicted
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TABLE VI
ABLATION STUDY OF COMPUTATION COST REGULARIZATION PARAMETER β FOR ACCURACY VS EFFICIENCY TRADE-OFF ON MULTIPLE DATASETS.

Dynamic β
Vimeo90K ATD12K Xiph-2K Xiph-4K

TFLOPs PSNR SSIM TFLOPs PSNR SSIM TFLOPs PSNR SSIM TFLOPs PSNR SSIM

✗ 0.0 0.090 35.71 0.9791 0.409 28.83 0.9566 1.746 36.40 0.9664 1.746 33.62 0.9453

✓ 0.1 0.087 35.69 0.9789 0.317 28.83 0.9564 1.659 36.41 0.9662 1.650 33.62 0.9453
✓ 0.5 0.084 35.66 0.9784 0.313 28.83 0.9564 1.543 36.37 0.9654 1.552 33.62 0.9452
✓ 1.0 0.081 35.58 0.9775 0.274 28.79 0.9555 1.480 36.32 0.9650 1.428 33.61 0.9448
✓ 3.0 0.079 35.41 0.9753 0.270 28.78 0.9553 1.393 36.05 0.9609 1.377 33.54 0.9436
✓ 5.0 0.077 35.21 0.9730 0.247 28.74 0.9541 1.336 35.75 0.9573 1.274 33.30 0.9409
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Fig. 12. Analysis of accuracy vs efficiency under different compression threshold ratio selection approaches on multiple datasets.

multi-scale sparse valid masks M l, l ∈ {1, 2, 3} on different
VFI datasets under the same compression threshold ratio
η = 0.01. This phenomenon also appears in traditional image
compression [19]–[21], which means that high resolution or
cartoon images are more spatially redundant to achieve higher
compression ratio under the same compressed image quality.

3) Dynamic Compression Threshold Ratio Selection: To
verify proposed dynamic compression threshold ratio selection
approach for instance-aware efficient frame interpolation, we
vary computation cost regularization parameter β during the
second training step and record results of these dynamic
models on diverse datasets, which are presented in Table VI. In
this ablation, we set m = 4 and threshold ratio candidates as
0.000, 0.005, 0.010 and 0.015 corresponding to above fixed
threshold ratio experiments. The baseline method that does
not use any wavelet compression approach is also listed in
the first line for reference. In Table VI, the dynamic model
tends to employ more computation to achieve better accuracy
when given relatively small β, which is realized by selecting
relatively small η by the threshold classifier during end-to-
end optimization. For a more intuitive comparison between
fixed η and dynamic η settings, we further plot their accuracy
vs efficiency trade-off line charts in Fig. 12. As is depicted,
under the same computation cost, the relative improvement
of dynamic selection approach against fixed threshold method
behaves different in regard to both β and datasets.

For the first factor, the relative improvement is more obvious
when β is set to a medium value. It is because that in this case
the threshold classifier can have more chance to select different
threshold candidates by learning the instance difference for
frame interpolation. On the other hand, dynamic method tends
to degrade to fixed method when given relatively large or small

Overlay Ground Truth Prediction 𝑭𝒕→𝟎 𝑭𝒕→𝟏

Fig. 13. Visualization results of WaveletVFI for selecting different com-
pression threshold ratios. Top, middle and bottom groups stand for selecting
threshold ratio η as 0.005, 0.010 and 0.015 respectively.

β. Therefore, we employ β = 1 in WaveletVFI due to its
largest performance gain. As for the second factor, the relative
improvement is more obvious when the variation of spatial-
temporal texture distribution in this dataset is larger. To prove
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it, we use FastFlowNet [68] to estimate inter-frame optical
flow and analyze their motion magnitude statistics, whose
results are shown in Table V and Fig. 11. As can be seen
in Fig. 12, there is almost no difference on ATD12K since
it has relatively large motion variation but relatively small
texture variation. On the other hand, the relative computation
reduction under the same accuracy is much more obvious
on the challenging Xiph-4K dataset. It is because that both
the texture and the motion distribution variation on Xiph-4K
are relatively large. In summary, proposed dynamic threshold
selection approach in wavelet domain can achieve similar
accuracy as the baseline method, while reducing computation
cost by 10.0%, 33.0%, 15.2% and 18.2% on Vimeo90K,
ATD12K, Xiph-2K and Xiph-4K benchmarks respectively.

E. Discussion on Dynamic Threshold Selection

In this part, we analyze the dynamic prediction results of
the compression threshold ratio classifier on Vimeo90K test
set with β set to 1 during the second training step. Prediction
results with different threshold ratio selection are visualized
in Fig. 13. Intuitively, we can get following conclusions. 1)
In the top group of Fig. 13, when input frames come from
rich and clear texture, and the inter-frame motion is relatively
simple, the threshold classifier tends to estimate a small η,
that consumes more computation to synthesize more reliable
high-frequency texture of the target frame. 2) In the middle
group of Fig. 13, when input frames come from rich and clear
texture, and the inter-frame motion is relatively complex, the
threshold classifier tends to estimate a medium η, that reduces
some computation for NWS to remove some unreliable high-
frequency texture of the target frame. 3) In the bottom group
of Fig. 13, when input frames come from simple and blurry
texture, and the inter-frame motion is relatively complex, the
threshold classifier tends to select a large η, that consumes
less computation to synthesize less unreliable high-frequency
texture of the target frame.

F. Limitations

Currently, our framework only predicts the single middle
frame, where t = 0.5. For interpolating multiple intermediate
frames, it can work in a recursive manner, but which may lead
to error accumulation. This problem can be solved to some
extent by modeling multiple discrete intermediate optical flow
with a temporal encoding conditional input like IFRNet [29],
that can approximate arbitrary time interpolation.

V. CONCLUSION

To our best knowledge, it is the first time that the spa-
tial redundancy problem in frame interpolation is studied in
detail, which is particularly important with the popularity
of high-resolution displays. In this work, we have proposed
a novel frame interpolation algorithm in wavelet domain to
achieve on par accuracy with SOTA methods but with better
efficiency. Our method exploits the sparse representation in
wavelet decomposition and employs sparse convolution to
predict multi-scale wavelet coefficients in certain critical areas

for computation reduction. Moreover, we have proposed a
dynamic threshold selection approach to better allocate com-
putation for each input sample. Experiments on the traditional
low resolution, current high resolution and animation frame
interpolation benchmarks demonstrate the effectiveness of pro-
posed contributions, which can significantly reduce the overall
resource consumption while maintaining advanced VFI accu-
racy. Since our approaches are orthogonal and complements
other efficient methods, such as channel pruning, we hope
proposed WaveletVFI can benefit the related communities.
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